Phase-space Lagrangian derivation of electrostatic gyrokinetics in general geometry
ArXiv 1009.0378 (2010)
Abstract:
Gyrokinetic theory is based on an asymptotic expansion in the small parameter $\epsilon$, defined as the ratio of the gyroradius and the characteristic length of variation of the magnetic field. In this article, this ordering is strictly implemented to compute the electrostatic gyrokinetic phase-space Lagrangian in general magnetic geometry to order $\epsilon^2$. In particular, a new expression for the complete second-order gyrokinetic Hamiltonian is provided, showing that in a rigorous treatment of gyrokinetic theory magnetic geometry and turbulence cannot be dealt with independently. The new phase-space gyrokinetic Lagrangian gives a Vlasov equation accurate to order $\epsilon^2$ and a Poisson equation accurate to order $\epsilon$. The final expressions are explicit and can be implemented into any simulation without further computations.Galactic fountains and gas accretion
AIP Conference Proceedings 1240 (2010) 166-168
Abstract:
Star-forming disc galaxies such as the Milky Way need to accrete ≳1 M⊙ of gas each year to sustain their star formation. This gas accretion is likely to come from the cooling of the hot corona, however it is still not clear how this process can take place. We present simulations supporting the idea that this cooling and the subsequent accretion are caused by the passage of cold galactic-fountain clouds through the hot corona. The Kelvin-Helmholtz instability strips gas from these clouds and the stripped gas causes coronal gas to condense in the cloud's wake. For likely parameters of the Galactic corona and of typical fountain clouds we obtain a global accretion rate of the order of that required to feed the star formation. © 2010 American Institute of Physics.Origins of the Thick Disk as Traced by the Alpha-Elements of Metal-Poor Giant Stars Selected from RAVE
ArXiv 1008.3828 (2010)
Abstract:
Theories of thick disk formation can be differentiated by measurements of stellar elemental abundances. We have undertaken a study of metal-poor stars selected from the RAVE spectroscopic survey of bright stars to establish whether or not there is a significant population of metal-poor thick-disk stars ([Fe/H] <~ -1.0) and to measure their elemental abundances. In this paper, we present abundances of four alpha-elements (Mg, Si, Ca, Ti) and iron for a subsample of 212 RGB and 31 RC/HB stars from this study. We find that the [alpha/Fe] ratios are enhanced implying that enrichment proceeded by purely core-collapse supernovae. This requires that star formation in each star forming region had a short duration. The relative lack of scatter in the [alpha/Fe] ratios implies good mixing in the ISM prior to star formation. In addition, the ratios resemble that of the halo, indicating that the halo and thick disk share a similar massive star IMF. We conclude that the alpha enhancement of the metal-poor thick disk implies that direct accretion of stars from dwarf galaxies similar to surviving dwarf galaxies today did not play a major role in the formation of the thick disk.Gyrokinetic simulation of entropy cascade in two-dimensional electrostatic turbulence
Journal of Plasma and Fusion Research SERIES Japan Society of Plasma Science and Fusion Research 9 (2010) 509-516