Dark Matter Problem in Disk Galaxies

ArXiv astro-ph/0003199 (2000)

Authors:

J Binney, O Gerhard, J Silk

Abstract:

In the generic CDM cosmogony, dark-matter halos emerge too lumpy and centrally concentrated to host observed galactic disks. Moreover, disks are predicted to be smaller than those observed. We argue that the resolution of these problems may lie with a combination of the effects of protogalactic disks, which would have had a mass comparable to that of the inner dark halo and be plausibly non-axisymmetric, and of massive galactic winds, which at early times may have carried off as many baryons as a galaxy now contains. A host of observational phenomena, from quasar absorption lines and intracluster gas through the G-dwarf problem point to the existence of such winds. Dynamical interactions will homogenize and smooth the inner halo, and the observed disk will be the relic of a massive outflow. The inner halo expanded after absorbing energy and angular momentum from the ejected material. Observed disks formed at the very end of the galaxy formation process, after the halo had been reduced to a minor contributor to the central mass budget and strong radial streaming of the gas had died down.

Disk heating and stellar migration in galaxies

ArXiv astro-ph/0003194 (2000)

Authors:

JJ Binney, JA Sellwood

Abstract:

The paper claimed that significant radial migration of stars in a stellar disk like that of the Milky Way could not occur. We now think that while the treatment of the effects of molecular clouds was correct, the paper seriously underestimated the ability of spiral arms to shift the radii of stars that corotate with them. Consequently, it is likely that significant radial migration_is_ possible.

Axisymmetric, three-integral models of galaxies: A massive black hole in NGC 3379

Astronomical Journal 119:3 (2000) 1157-1171

Authors:

K Gebhardt, D Richstone, J Kormendy, TR Lauer, EA Ajhar, R Bender, A Dressler, SM Faber, C Grillmair, J Magorrian, S Tremaine

Abstract:

We fit axisymmetric three-integral dynamical models to NGC 3379 using the line-of-sight velocity distribution obtained from Hubble Space Telescope FOS spectra of the galaxy center and ground-based long-slit spectroscopy along four position angles, with the light distribution constrained by WFPC2 and ground-based images. We have fitted models with inclinations from 29° (intrinsic galaxy type E5) to 90° (intrinsic E1) and black hole masses from 0 to 109 M⊙. The best-fit black hole masses range from 6 × 107 to 2 × 108 M⊙, depending on inclination. The preferred inclination is 90° (edge-on); however, the constraints on allowed inclination are not very strong, owing to our assumption of constant M/LV. The velocity ellipsoid of the best model is not consistent with either isotropy or a two-integral distribution function. Along the major axis, the velocity ellipsoid becomes tangential at the innermost bin, radial in the midrange radii, and tangential again at the outermost bins. The rotation rises quickly at small radii owing to the presence of the black hole. For the acceptable models, the radial-to-tangential [(σ2θ + σ2φ)/2] dispersion in the midrange radii ranges over 1.1 < σr/σt < 1.7, with the smaller black holes requiring larger radial anisotropy. Compared with these three-integral models, two-integral isotropic models overestimate the black hole mass since they cannot provide adequate radial motion. However, the models presented in this paper still contain restrictive assumptions - namely, assumptions of constant M/LV and spheroidal symmetry - requiring yet more models to study black hole properties in complete generality.

Disks, extrasolar planets and migration

Space Science Reviews 92:1-2 (2000) 323-340

Authors:

C Terquem, JCB Papaloizou, RP Nelson

Abstract:

We review results about protoplanetary disk models, protoplanet migration and formation of giant planets with migrating cores. We first model the protoplanetary nebula as an α-accretion disk and present steady state calculations for different values of α and gas accretion rate through the disk. We then review the current theories of protoplanet migration in the context of these models, focusing on the gaseous disk-protoplanet tidal interaction. According to these theories, the migration timescale may be shorter than the planetary formation timescale. Therefore we investigate planet formation in the context of a migrating core, considering both the growth of the core and the build-up of the envelope in the course of the migration.

The velocity and mass distribution of clusters of galaxies from the CNOC1 cluster redshift survey

Astronomical Journal 119:5 (2000) 2038-2052

Authors:

RP Van Der Marel, J Magorrian, RG Carlberg, HKC Yee, E Ellingson

Abstract:

In the context of the CNOC1 cluster survey, redshifts were obtained for galaxies in 16 clusters. The resulting sample is ideally suited for an analysis of the internal velocity and mass distribution of clusters. Previous analyses of this data set used the Jeans equation to model the projected velocity dispersion profile. However, the results of such an analysis always yield a strong degeneracy between the mass density profile and the velocity dispersion anisotropy profile. Here we analyze the full (R, v) data set of galaxy positions and velocities in an attempt to break this degeneracy. We build an "ensemble cluster" from the individual clusters under the assumption that they form a homologous sequence; if clusters are not homologous then our results are probably still valid in an average sense. To interpret the data we study a one-parameter family of spherical models with different constant velocity dispersion anisotropy, chosen to all provide the same acceptable fit to the projected velocity dispersion profile. The best-fit model is sought using a variety of statistics, including the likelihood of the data set and the shape and Gauss-Hermite moments of the grand-total velocity histogram. The confidence regions and goodness of fit for the best-fit model are determined using Monte Carlo simulations. Although the results of our analysis depend slightly on which statistic is used to judge the models, all statistics agree that the best-fit model is close to isotropic. For none of the statistics does the 1 σ confidence region extend below σr/σt = 0.74, or above σr/σt, = 1.05. This result derives primarily from the fact that the observed grand-total velocity histogram is close to Gaussian, which is not expected to be the case for a strongly anisotropic model. The best-fitting models have a mass-to-number density ratio that is approximately independent of radius over the range constrained by the data. They also have a mass density profile that is consistent with the dark matter halo profile advocated by Navarro, Frenk, & White in terms of both the profile shape and the characteristic scale length. This adds important new weight to the evidence that clusters do indeed follow this proposed universal mass density profile. We present a detailed discussion of a number of possible uncertainties in our analysis, including our treatment of interlopers and brightest cluster galaxies, our use of a restricted one-parameter family of distribution functions, our use of spherical models for what is in reality an ensemble of nonspherical clusters, and our assumption that clusters form a homologous set. These issues all constitute important approximations in our analysis. However, none of the tests that we have done indicates that these approximations influence our results at a significant level.