A thermally stable heating mechanism for the intracluster medium: turbulence, magnetic fields and plasma instabilities

ArXiv 1003.2719 (2010)

Authors:

MW Kunz, AA Schekochihin, SC Cowley, JJ Binney, JS Sanders

Abstract:

We consider the problem of self-regulated heating and cooling in galaxy clusters and the implications for cluster magnetic fields and turbulence. Viscous heating of a weakly collisional magnetised plasma is regulated by the pressure anisotropy with respect to the local direction of the magnetic field. The intracluster medium is a high-beta plasma, where pressure anisotropies caused by the turbulent stresses and the consequent local changes in the magnetic field will trigger very fast microscale instabilities. We argue that the net effect of these instabilities will be to pin the pressure anisotropies at a marginal level, controlled by the plasma beta parameter. This gives rise to local heating rates that turn out to be comparable to the radiative cooling rates. Furthermore, we show that a balance between this heating and Bremsstrahlung cooling is thermally stable, unlike the often conjectured balance between cooling and thermal conduction. Given a sufficient (and probably self-regulating) supply of turbulent power, this provides a physical mechanism for mitigating cooling flows and preventing cluster core collapse. For observed density and temperature profiles, the assumed balance of viscous heating and radiative cooling allows us to predict magnetic-field strengths, turbulent velocities and turbulence scales as functions of distance from the centre. Specific predictions and comparisons with observations are given for several different clusters. Our predictions can be further tested by future observations of cluster magnetic fields and turbulent velocities.

Distance determination for RAVE stars using stellar models

ArXiv 1003.0758 (2010)

Authors:

MA Breddels, MC Smith, A Helmi, O Bienayme, J Binney, J Bland-Hawthorn, C Boeche, BCM Burnett, R Campbell, KC Freeman, B Gibson, G Gilmore, EK Grebel, U Munari, JF Navarro, QA Parker, GM Seabroke, A Siebert, A Siviero, M Steinmetz, FG Watson, M Williams, RFG Wyse, T Zwitter

Abstract:

(Abridged) Aims:We develop a method for deriving distances from spectroscopic data and obtaining full 6D phase-space coordinates for the RAVE survey's second data release. Methods: We used stellar models combined with atmospheric properties from RAVE (Teff, logg and [Fe/H]) and (J-Ks) photometry from archival sources to derive absolute magnitudes. We are able to derive the full 6D phase-space coordinates for a large sample of RAVE stars. This method is tested with artificial data, Hipparcos trigonometric parallaxes and observations of the open cluster M67. Results: When we applied our method to a set of 16 146 stars, we found that 25% (4 037) of the stars have relative (statistical) distance errors of < 35%, while 50% (8 073) and 75% (12 110) have relative (statistical) errors smaller than 45% and 50%, respectively. Our various tests show that we can reliably estimate distances for main-sequence stars, but there is an indication of potential systematic problems with giant stars. For the main-sequence star sample (defined as those with log(g) > 4), 25% (1 744) have relative distance errors < 31%, while 50% (3 488) and 75% (5 231) have relative errors smaller than 36% and 42%, respectively. Our full dataset shows the expected decrease in the metallicity of stars as a function of distance from the Galactic plane. The known kinematic substructures in the U and V velocity components of nearby dwarf stars are apparent in our dataset, confirming the accuracy of our data and the reliability of our technique. We provide independent measurements of the orientation of the UV velocity ellipsoid and of the solar motion, and they are in very good agreement with previous work. Conclusions: The distance catalogue for the RAVE second data release is available at http://www.astro.rug.nl/~rave

Resolving velocity space dynamics in continuum gyrokinetics

Physics of Plasmas AIP Publishing 17:3 (2010) 032106

Authors:

M Barnes, W Dorland, T Tatsuno

On the dynamics of multiple systems of hot super-Earths and Neptunes: Tidal circularization, resonance and the HD 40307 system

(2010)

Authors:

John CB Papaloizou, Caroline Terquem

Gas driven massive black hole binaries: signatures in the nHz gravitational wave background

(2010)

Authors:

Bence Kocsis, Alberto Sesana