Oscillations in solar-type stars tidally induced by orbiting planets

ArXiv astro-ph/9711213 (1997)

Authors:

C Terquem, JCB Papaloizou, RP Nelson, DNC Lin

Abstract:

We examine the effect of dynamical tides raised by a companion on a solar-type star. In these binaries, gravity or g mode oscillations are excited by the companion in the radiative region beneath the convective envelope of the star. They become evanescent in the convection zone. This is of particular interest in connection with the newly discovered planets, some of which are found to orbit around solar-type stars with a period comparable to that of the high order g modes of the star. One such example is 51 Pegasi. Here, we determine the magnitude of the perturbed velocity induced by the tides at the stellar surface. We show that, in the case of 51 Pegasi, this velocity is too small to be observed. This result is insensitive to the magnitude of the stellar turbulent viscosity assumed and is not affected by the possibility of resonance, which occurs when the frequency of the tidal disturbance is close to that of some normal mode of the star. We also discuss the orbital evolution and synchronization timescales associated with the tidal interaction.

The LMC Microlensing Events: Evidence for a Warped and Flaring Milky Way Disk?

ArXiv astro-ph/9711224 (1997)

Authors:

NW Evans, G Gyuk, MS Turner, JJ Binney

Abstract:

The simplest interpretation of the microlensing events towards the Large Magellanic Cloud detected by the MACHO and EROS collaborations is that about one third of the halo of our own Milky Way galaxy exists in the form of objects of around 0.5 solar mass. There are grave problems with this interpretation. A normal stellar population of 0.5 solar mass stars should be visible. The other obvious candidate for the lenses is a population of white dwarfs. But, the precursor population must have polluted the interstellar medium with metals, in conflict with current population II abundance. Here, we propose a more conventional, but at the moment more speculative, explanation. Some of the lenses are stars in the disk of the Milky Way. They lie along the line of sight to the LMC because of warping and flaring of the Galactic disk. Depending on its scalelength and ellipticity, the disk's optical depth may lie anywhere between $0.2 \times 10^{-7}$ and $0.9 \times 10^{-7}$. Together with contributions from the LMC disk and bar and perhaps even intervening stellar contaminants, the total optical depth may match the data within the uncertainties. Microlensing towards the LMC may be telling us more about the distorted structure and stellar populations of the outer Milky Way disk than the composition of the dark halo.

The Galactic Bar

ArXiv astro-ph/9710361 (1997)

Authors:

Ortwin Gerhard, James Binney, HongSheng Zhao

Abstract:

We summarize recent work on the structure and dynamics of the Galactic bar and inner disk. Current work focusses on constructing a quantitative model which integrates NIR photometry, source count observations, gas kinematics, stellar dynamical observations, and microlensing. Some avenues for future research are discussed.

Local stellar kinematics from Hipparcos data

ArXiv astro-ph/9710077 (1997)

Authors:

Walter Dehnen, James Binney

Abstract:

(shortened) From a kinematically unbiased subsample of the Hipparcos catalogue we have redetermined as a function of colour the kinematics of main-sequence stars. The stars' mean heliocentric velocity nicely follows the asymmetric drift relation, except for stars blueward of B-V=0.1. Extrapolating to zero dispersion yields for the velocity of the Sun w.r.t. the LSR in km/s: U_0=10.00+/-0.36 (radially inwards), V_0=5.23+/-0.62 (in direction of galactic rotation), and W_0=7.17+/-0.38 (vertically upwards). A plot of velocity dispersion vs. colour beautifully shows Parenago's discontinuity: the dispersion is constant for B-V>0.62 and decreases towards bluer colour. We determine the velocity-dispersion tensor sigma^2_ij as function of B-V. The mixed moments involving vertical motion are zero within the errors, while sigma^2_xy is non-zero at about (10km/s)^2 independent of colour. The resulting vertex deviations are about 20 deg for early-type stars and 10+/-4 deg for old-disc stars. The persistence of the vertex deviation to late-type stars implies that the Galactic potential is significantly non-axisymmetric at the solar radius. If spiral arms are responsible for this, they cannot be tightly wound. Except for stars bluer than B-V=0.1 the ratios of the principal velocity dispersions are 2.2 : 1.4 :1, while the absolute values increase with colour from sigma_1=20km/s at B-V=0.2 to sigma_1=38km/s at Parenago's discontinuity and beyond. These ratios imply significant heating of the disc by spiral structure and that R_0/R_d=3 to 3.5, where R_d is the scale length of the disc.

Gravitational lensing and the angular-diameter distance relation

ArXiv astro-ph/9708110 (1997)

Authors:

Fedja Hadrovic, James Binney

Abstract:

We show that the usual relation between redshift and angular-diameter distance can be obtained by considering light from a source to be gravitationally lensed by material that lies in the telescope beam as it passes from source to observer through an otherwise empty universe. This derivation yields an equation for the dependence of angular diameter on redshift in an inhomogeneous universe. We use this equation to model the distribution of angular-diameter distance for redshift z=3 in a realistically clustered cosmology. The distribution is such that attempts to determine q_0 from angular-diameter distances will systematically underestimate q_0 by ~0.15, and large samples would be required to beat down the intrinsic dispersion in measured values of q_0.