LMC N132D: a mature supernova remnant with a power-law gamma-ray spectrum extending beyond 8 TeV

Astronomy and Astrophysics EDP Sciences 655 (2021) A7

Authors:

H Abdalla, F Aharonian, F Ait Benkhali, Eo Anguner, C Arcaro, C Armand, T Armstrong, H Ashkar, M Backes, V Baghmanyan, V Barbosa Martins, A Barnacka, M Barnard, R Batzofin, Y Becherini, D Berge, K Bernloehr, B Bi, M Boettcher, C Boisson, J Bolmont, M de Bony de Lavergne, M Breuhaus, R Brose, F Brun, T Bulik, T Bylund, F Cangemi, S Caroff, S Casanova, J Catalano, P Chambery, T Chand, A Chen, G Cotter, M Curylo, J Damascene Mbarubucyeye, Id Davids, J Davies, J Devin, A Djannati-Atai, A Dmytriiev, A Donath, V Doroshenko, L Dreyer, L Du Plessis, C Duffy, K Egberts, S Einecke

Abstract:

Context Supernova remnants (SNRs) are commonly thought to be the dominant sources of Galactic cosmic rays up to the knee of the cosmic-ray spectrum at a few PeV. Imaging Atmospheric Cherenkov Telescopes have revealed young SNRs as very-high-energy (VHE, >100 GeV) gamma-ray sources, but for only a few SNRs the hadronic cosmic-ray origin of their gamma-ray emission is indisputably established. In all these cases, the gamma-ray spectra exhibit a spectral cutoff at energies much below 100 TeV and thus do not reach the PeVatron regime.

Aims: The aim of this work was to achieve a firm detection for the oxygen-rich SNR LMC N132D in the VHE gamma-ray domain with an extended set of data, and to clarify the spectral characteristics and the localization of the gamma-ray emission from this exceptionally powerful gamma-ray-emitting SNR.

Methods: We analyzed 252 h of High Energy Stereoscopic System (H.E.S.S.) observations towards SNR N132D that were accumulated between December 2004 and March 2016 during a deep survey of the Large Magellanic Cloud, adding 104 h of observations to the previously published data set to ensure a > 5σ detection. To broaden the gamma-ray spectral coverage required for modeling the spectral energy distribution, an analysis of Fermi-LAT Pass 8 data was also included.

Results: We unambiguously detect N132D at VHE with a significance of 5.7σ. We report the results of a detailed analysis of its spectrum and localization based on the extended H.E.S.S. data set. The joint analysis of the extended H.E.S.S and Fermi-LAT data results in a spectral energy distribution in the energy range from 1.7 GeV to 14.8 TeV, which suggests a high luminosity of N132D at GeV and TeV energies. We set a lower limit on a gamma-ray cutoff energy of 8 TeV with a confidence level of 95%. The new gamma-ray spectrum as well as multiwavelength observations of N132D when compared to physical models suggests a hadronic origin of the VHE gamma-ray emission.

Conclusions: SNR N132D is a VHE gamma-ray source that shows a spectrum extending to the VHE domain without a spectral cutoff at a few TeV, unlike the younger oxygen-rich SNR Cassiopeia A. The gamma-ray emission is best explained by a dominant hadronic component formed by diffusive shock acceleration. The gamma-ray properties of N132D may be affected by an interaction with a nearby molecular cloud that partially lies inside the 95% confidence region of the source position.

Energy partition between Alfvénic and compressive fluctuations in magnetorotational turbulence with near-azimuthal mean magnetic field

(2021)

Authors:

Y Kawazura, AA Schekochihin, M Barnes, W Dorland, SA Balbus

Search for Multi-flare Neutrino Emissions in 10 yr of IceCube Data from a Catalog of Sources

Astrophysical Journal Letters American Astronomical Society 920:2 (2021) L45-L45

Authors:

R Abbasi, M Ackermann, J Adams, Ja Aguilar, M Ahlers, M Ahrens, C Alispach, Aa Alves, Nm Amin, R An, K Andeen, T Anderson, G Anton, C Argüelles, Y Ashida, S Axani, X Bai, Ab V., A Barbano, Sw Barwick, B Bastian, V Basu, S Baur, R Bay, Jj Beatty, Kh Becker, Jb Tjus, C Bellenghi, S Benzvi, D Berley, E Bernardini, Dz Besson, G Binder, D Bindig, E Blaufuss, S Blot, M Boddenberg, F Bontempo, J Borowka, S Böser, O Botner, J Böttcher, E Bourbeau, F Bradascio, J Braun, S Bron, J Brostean-Kaiser, S Browne, A Burgman, Rt Burley

Abstract:

A recent time-integrated analysis of a catalog of 110 candidate neutrino sources revealed a cumulative neutrino excess in the data collected by IceCube between 2008 April 6 and 2018 July 10. This excess, inconsistent with the background hypothesis in the Northern Hemisphere at the 3.3σ level, is associated with four sources: NGC 1068, TXS 0506+056, PKS 1424+240, and GB6 J1542+6129. This Letter presents two time-dependent neutrino emission searches on the same data sample and catalog: a point-source search that looks for the most significant time-dependent source of the catalog by combining space, energy, and time information of the events, and a population test based on binomial statistics that looks for a cumulative time-dependent neutrino excess from a subset of sources. Compared to previous time-dependent searches, these analyses enable a feature to possibly find multiple flares from a single direction with an unbinned maximum-likelihood method. M87 is found to be the most significant time-dependent source of this catalog at the level of 1.7σ post-trial, and TXS 0506+056 is the only source for which two flares are reconstructed. The binomial test reports a cumulative time-dependent neutrino excess in the Northern Hemisphere at the level of 3.0σ associated with four sources: M87, TXS 0506+056, GB6 J1542+6129, and NGC 1068.

Inefficient magnetic-field amplification in supersonic laser-plasma turbulence

Physical Review Letters American Physical Society 127 (2021) 175002

Authors:

Afa Bott, L Chen, G Boutoux, T Caillaud, A Duval, M Koenig, B Khiar, I Lantuéjoul, L Le-Deroff, B Reville, R Rosch, D Ryu, C Spindloe, B Vauzour, B Villette, Aa Schekochihin, Dq Lamb, P Tzeferacos, G Gregori, A Casner

Abstract:

We report a laser-plasma experiment that was carried out at the LMJ-PETAL facility and realized the first magnetized, turbulent, supersonic plasma with a large magnetic Reynolds number ($\mathrm{Rm} \approx 45$) in the laboratory. Initial seed magnetic fields were amplified, but only moderately so, and did not become dynamically significant. A notable absence of magnetic energy at scales smaller than the outer scale of the turbulent cascade was also observed. Our results support the notion that moderately supersonic, low-magnetic-Prandtl-number plasma turbulence is inefficient at amplifying magnetic fields.

Gyrokinetic simulations in stellarators using different computational domains

Nuclear Fusion IOP Publishing 61:11 (2021) 116074

Authors:

E Sanchez, Jm Garcia-Regana, A Banon Navarro, Jhe Proll, C Mora Moreno, A Gonzalez-Jerez, I Calvo, R Kleiber, J Riemann, J Smoniewski, M Barnes, Fi Parra

Abstract:

In this work, we compare gyrokinetic simulations in stellarators using different computational domains, namely, flux tube (FT), full-flux-surface (FFS), and radially global (RG) domains. Two problems are studied: the linear relaxation of zonal flows (ZFs) and the linear stability of ion temperature gradient (ITG) modes. Simulations are carried out with the codes EUTERPE, GENE, GENE-3D, and stella in magnetic configurations of LHD and W7-X using adiabatic electrons. The ZF relaxation properties obtained in different FTs are found to differ with each other and with the RG result, except for sufficiently long FTs, in general. The FT length required for convergence is configuration-dependent. Similarly, for ITG instabilities, different FTs provide different results, but the discrepancy between them diminishes with increasing FT length. FFS and FT simulations show good agreement in the calculation of the growth rate and frequency of the most unstable modes in LHD, while for W7-X differences in the growth rates are found between the FT and the FFS domains. RG simulations provide results close to the FFS ones. The radial scale of unstable ITG modes is studied in global and FT simulations finding that in W7-X, the radial scale of the most unstable modes depends on the binormal wavenumber, while in LHD no clear dependency is found.