High eccentricities and high masses characterize gravitational-wave captures in galactic nuclei as seen by Earth-based detectors

Monthly Notices of the Royal Astronomical Society Oxford University Press 506:2 (2021) 1665-1696

Authors:

Laszlo Gondan, Bence Kocsis

Abstract:

The emission of gravitational waves (GWs) during single-single close encounters in galactic nuclei (GNs) leads to the formation and rapid merger of highly eccentric stellar-mass black hole (BH) binaries. The distinct distribution of physical parameters makes it possible to statistically distinguish this source population from others. Previous studies determined the expected binary parameter distribution for this source population in single GNs. Here, we take into account the effects of dynamical friction, post-Newtonian corrections, and observational bias to determine the detected sources' parameter distributions from all GNs in the Universe. We find that the total binary mass distribution of detected mergers is strongly tilted towards higher masses. The distribution of initial peak GW frequency is remarkably high between 1 and 70 Hz, ~50 per cent of GW capture sources form above 10 Hz with e ≥ 0.95. The eccentricity when first entering the LIGO/Virgo/KAGRA band satisfies e10 Hz > 0.1 for over 92 per cent of sources and e10 Hz > 0.8 for more than half of the sources. At the point when the pericentre reaches 10GM/c2 the eccentricity satisfies e10M > 0.1 for over ~70 per cent of the sources, making single-single GWcapture events in GNs the most eccentric source population among the currently known stellar-mass binary BH merger channels in our Universe. We identify correlations between total mass, mass ratio, source detection distance, and eccentricities e10 Hz and e10M. The recently measured source parameters of GW190521 lie close to the peak of the theoretical distributions and the estimated escape speed of the host environment is ~7.5 × 103-1.2 × 104 km s-1, making this source a candidate for this astrophysical merger channel.

TeV emission of Galactic plane sources with HAWC and H.E.S.S

ArXiv 2107.01425 (2021)

Authors:

H Abdalla, F Aharonian, F Ait Benkhali, EO Angüner, C Arcaro, C Armand, T Armstrong, H Ashkar, M Backes, V Baghmanyan, V Barbosa Martins, A Barnacka, M Barnard, Y Becherini, D Berge, K Bernlöhr, B Bi, M Böttcher, C Boisson, J Bolmont, M de Bony de Lavergne, M Breuhaus, R Brose, F Brun, P Brun, M Bryan, M Büchele, T Bulik, T Bylund, S Caroff, A Carosi, T Chand, S Chandra, A Chen, G Cotter, M Curyło, J Damascene Mbarubucyeye, ID Davids, J Davies, C Deil, J Devin, L Dirson, A Djannati-Ataï, A Dmytriiev, A Donath, V Doroshenko, L Dreyer, C Duffy, J Dyks, K Egberts, F Eichhorn, S Einecke, G Emery, J-P Ernenwein, K Feijen, S Fegan, A Fiasson, G Fichet de Clairfontaine, G Fontaine, S Funk, M Füßling, S Gabici, YA Gallant, G Giavitto, L Giunti, D Glawion, JF Glicenstein, D Gottschall, M-H Grondin, J Hahn, M Haupt, G Hermann, JA Hinton, W Hofmann, C Hoischen, TL Holch, M Holler, M Hörbe, D Horns, D Huber, M Jamrozy, D Jankowsky, F Jankowsky, I Jung-Richardt, E Kasai, MA Kastendieck, K Katarzyński, U Katz, D Khangulyan, B Khélifi, S Klepser, W Kluźniak, Nu Komin, R Konno, K Kosack, D Kostunin, M Kreter, G Lamanna, A Lemière, M Lemoine-Goumard, J-P Lenain, F Leuschner, C Levy, T Lohse, I Lypova, J Mackey, J Majumdar, D Malyshev, D Malyshev, V Marandon, P Marchegiani, A Marcowith, A Mares, G Martí-Devesa, R Marx, G Maurin, PJ Meintjes, M Meyer, AMW Mitchell, R Moderski, L Mohrmann, A Montanari, C Moore, P Morris, E Moulin, J Muller, T Murach, K Nakashima, A Nayerhoda, M de Naurois, H Ndiyavala, J Niemiec, L Oakes, PO Brien, H Odaka, S Ohm, L Olivera-Nieto, E de Ona Wilhelmi, M Ostrowski, S Panny, M Panter, RD Parsons, G Peron, B Peyaud, Q Piel, S Pita, V Poireau, A Priyana Noel, DA Prokhorov, H Prokoph, G Pühlhofer, M Punch, A Quirrenbach, S Raab, R Rauth, P Reichherzer, A Reimer, O Reimer, Q Remy, M Renaud, F Rieger, L Rinchiuso, C Romoli, G Rowell, B Rudak, V Sahakian, S Sailer, H Salzmann, DA Sanchez, A Santangelo, M Sasaki, J Schäfer, F Schüssler, HM Schutte, U Schwanke, M Seglar-Arroyo, M Senniappan, AS Seyffert, N Shafi, JNS Shapopi, K Shiningayamwe, R Simoni, A Sinha, H Sol, A Specovius, S Spencer, M Spir-Jacob, Ł Stawarz, L Sun, R Steenkamp, C Stegmann, S Steinmassl, C Steppa, T Takahashi, T Tavernier, AM Taylor, R Terrier, JHE Thiersen, D Tiziani, M Tluczykont, L Tomankova, C Trichard, M Tsirou, R Tuffs, Y Uchiyama, DJ van der Walt, C van Eldik, C van Rensburg, B van Soelen, G Vasileiadis, J Veh, C Venter, P Vincent, J Vink, HJ Völk, Z Wadiasingh, SJ Wagner, J Watson, F Werner, R White, A Wierzcholska, Yu Wun Wong, A Yusafzai, M Zacharias, R Zanin, D Zargaryan, AA Zdziarski, A Zech, SJ Zhu, A Zmija, J Zorn, S Zouari, N Żywucka, A Albert, R Alfaro, C Alvarez, JC Arteaga-Velázquez, KP Arunbabu, D Avila Rojas, V Baghmanyan, E Belmont-Moreno, SY BenZvi, C Brisbois, KS Caballero-Mora, T Capistrán, A Carramiñana, S Casanova, U Cotti, J Cotzomi, S Coutiño de León, E De la Fuente, C de León, R Diaz Hernandez, JC Díaz-Vélez, BL Dingus, MA DuVernois, M Durocher, RW Ellsworth, K Engel, C Espinoza, KL Fan, M Fernández Alonso, N Fraija, A Galván-Gámez, D Garcia, JA García-González, F Garfias, G Giacinti, MM González, JA Goodman, JP Harding, S Hernandez, B Hona, D Huang, F Hueyotl-Zahuantitla, P Hüntemeyer, A Iriarte, A Jardin-Blicq, V Joshi, D Kieda, WH Lee, H León Vargas, JT Linnemann, AL Longinotti, G Luis-Raya, R López-Coto, K Malone, O Martinez, I Martinez-Castellanos, J Martínez-Castro, JA Matthews, P Miranda-Romagnoli, JA Morales-Soto, E Moreno, M Mostafá, A Nayerhoda, L Nellen, M Newbold, MU Nisa, R Noriega-Papaqui, N Omodei, A Peisker, Y Pérez Araujo, EG Pérez-Pérez, CD Rho, D Rosa-González, E Ruiz-Velasco, F Salesa Greus, A Sandoval, M Schneider, H Schoorlemmer, J Serna-Franco, AJ Smith, RW Springer, P Surajbali, K Tollefson, I Torres, R Torres-Escobedo, R Turner, F Ureña-Mena, L Villaseñor, T Weisgarber, E Willox, H Zhou

A Canonical Transformation to Eliminate Resonant Perturbations. I.

American Astronomical Society 162:1 (2021) 22

Authors:

Barnabás Deme, Bence Kocsis

Analytical, Statistical Approximate Solution of Dissipative and Nondissipative Binary-Single Stellar Encounters

Physical Review X American Physical Society (APS) 11:3 (2021) 031020

Authors:

Yonadav Barry Ginat, Hagai B Perets

Comments on Barker and Astoul (2021)

(2021)

Abstract:

The tidal evolution of interacting binaries when the orbital period is short compared to the primary star's convective time scale is a problem of long-standing. Terquem (2021) has argued that, when this temporal ordering scheme is obeyed, the rate of energy transfer from tides to convection (denoted $D_R$) is given by the product of the averaged Reynolds stress associated with the tidal velocity and the mean shear associated with the convective flow. In a recent response, Barker and Astoul (2021, hereafter BA21) claim to show that $D_R$ (in this form) cannot contribute to tidal dissipation. Their analysis is based on a study of Boussinesq and anelastic models. Here, we demonstrate that BA21 misidentify the correct term responsible for energy transfer between tides and convection. As a consequence, their anelastic calculations do not prove that the $D_R$ formulation is invalidated as an energy-loss coupling between tides and convection. BA21 also carry out a calculation in the Boussinesq approximation. Here, their claim that $D_R$ once again does not contribute is based on boundary conditions that do not apply to any star or planet that radiates energy from its surface, which is a key dissipational process in the problem we consider.