Strong suppression of heat conduction in a laboratory replica of galaxy-cluster turbulent plasmas

(2021)

Authors:

J Meinecke, P Tzeferacos, JS Ross, AFA Bott, S Feister, H-S Park, AR Bell, R Blandford, RL Berger, R Bingham, A Casner, LE Chen, J Foster, DH Froula, C Goyon, D Kalantar, M Koenig, B Lahmann, C-K Li, Y Lu, CAJ Palmer, R Petrasso, H Poole, B Remington, B Reville, A Reyes, A Rigby, D Ryu, G Swadling, A Zylstra, F Miniati, S Sarkar, AA Schekochihin, DQ Lamb, G Gregori

An upper observable black hole mass scale for tidal destruction events with thermal X-ray spectra

Monthly Notices of the Royal Astronomical Society Oxford University Press 505:2 (2021) 1629-1644

Authors:

Andrew Mummery, Steven A Balbus

Abstract:

We comprehensively model the X-ray luminosity emergent from time-dependent relativistic accretion discs, developing analytical models of the X-ray luminosity of thermal disc systems as a function of black hole mass M, disc mass Md, and disc α-parameter. The X-ray properties of these solutions will be directly relevant for understanding tidal disruption event (TDE) observations. We demonstrate an extremely strong suppression of thermal X-ray luminosity from large mass black holes, LX ∼ exp (− m7/6), where m is a dimensionless mass, roughly the black hole mass in unity of 106M⊙. This strong suppression results in upper observable black hole mass limits, which we demonstrate to be of order Mlim ≃ 3 × 107M⊙, above which thermal X-ray emission will not be observable. This upper observable black hole mass limit is a function of the remaining disc parameters, and the full dependence can be described analytically (equation 82). We demonstrate that the current population of observed X-ray TDEs is indeed consistent with an upper black hole mass limit of order M ∼ 107M⊙, consistent with our analysis.

The Equivalence Principle and The Cosmological Constant Problem

ArXiv 2105.0775 (2021)

Search for dark matter annihilation in the dwarf irregular galaxy WLM with H.E.S.S

(2021)

Authors:

HESS Collaboration, H Abdallah, R Adam, F Aharonian, F Ait Benkhali, EO Angüner, C Arcaro, C Armand, T Armstrong, H Ashkar, M Backes, V Baghmanyan, V Barbosa Martins, A Barnacka, M Barnard, Y Becherini, D Berge, K Bernlöhr, B Bi, M Böttcher, C Boisson, J Bolmont, M de Bony de Lavergne, M Breuhaus, F Brun, P Brun, M Bryan, M Büchele, T Bulik, T Bylund, S Caroff, A Carosi, S Casanova, T Chand, S Chandra, A Chen, G Cotter, M Curylo, J Damascene Mbarubucyeye, ID Davids, J Davies, C Deil, J Devin, P deWilt, L Dirson, A Djannati-Ataï, A Dmytriiev, A Donath, V Doroshenko, C Duffy, J Dyks, K Egberts, F Eichhorn, S Einecke, G Emery, J-P Ernenwein, K Feijen, S Fegan, A Fiasson, G Fichet de Clairfontaine, G Fontaine, S Funk, M Füßling, S Gabici, YA Gallant, G Giavitto, L Giunti, D Glawion, JF Glicenstein, D Gottschall, M-H Grondin, J Hahn, M Haupt, G Hermann, JA Hinton, W Hofmann, C Hoischen, TL Holch, M Holler, M Hörbe, D Horns, D Huber, M Jamrozy, D Jankowsky, F Jankowsky, A Jardin-Blicq, V Joshi, I Jung-Richardt, E Kasai, MA Kastendieck, K Katarzyński, U Katz, D Khangulyan, B Khèlifi, S Klepser, W Kluzniak, Nu Komin, R Konno, K Kosack, D Kostunin, M Kreter, G Lamanna, A Lemière, M Lemoine-Goumard, J-P Lenain, C Levy, T Lohse, I Lypova, J Mackey, J Majumdar, D Malyshev, D Malyshev, V Marandon, P Marchegiani, A Marcowith, A Mares, G Martì-Devesa, R Marx, G Maurin, PJ Meintjes, M Meyer, R Moderski, M Mohamed, L Mohrmann, A Montanari, C Moore, P Morris, E Moulin, J Muller, T Murach, K Nakashima, A Nayerhoda, M de Naurois, H Ndiyavala, F Niederwanger, J Niemiec, L Oakes, P O'Brien, H Odaka, S Ohm, L Olivera-Nieto, E de Ona Wilhelmi, M Ostrowski, M Panter, S Panny, RD Parsons, G Peron, B Peyaud, Q Piel, S Pita, V Poireau, A Priyana Noel, DA Prokhorov, H Prokoph, G Pühlhofer, M Punch, A Quirrenbach, S Raab, R Rauth, P Reichherzer, A Reimer, O Reimer, Q Remy, M Renaud, F Rieger, L Rinchiuso, C Romoli, G Rowell, B Rudak, E Ruiz-Velasco, V Sahakian, S Sailer, DA Sanchez, A Santangelo, M Sasaki, M Scalici, F Schüssler, HM Schutte, U Schwanke, S Schwemmer, M Seglar-Arroyo, M Senniappan, AS Seyffert, N Shafi, K Shiningayamwe, R Simoni, A Sinha, H Sol, A Specovius, S Spencer, M Spir-Jacob, L Stawarz, L Sun, R Steenkamp, C Stegmann, S Steinmassl, C Steppa, T Takahashi, T Tavernier, AM Taylor, R Terrier, D Tiziani, M Tluczykont, L Tomankova, C Trichard, M Tsirou, R Tuffs, Y Uchiyama, DJ van der Walt, C van Eldik, C van Rensburg, B van Soelen, G Vasileiadis, J Veh, C Venter, P Vincent, J Vink, HJ Völk, T Vuillaume, Z Wadiasingh, SJ Wagner, J Watson, F Werner, R White, A Wierzcholska, Yu Wun Wong, A Yusafzai, M Zacharias, R Zanin, D Zargaryan, AA Zdziarski, A Zech, S Zhu, J Zorn, S Zouari, N Zywucka

Continuous-in-time approach to flow shear in a linearly implicit local δf gyrokinetic code

Journal of Plasma Physics Cambridge University Press 87:2 (2021) 905870230

Authors:

Nicolas Christen, Michael Barnes, Felix I Parra

Abstract:

A new algorithm for toroidal flow shear in a linearly implicit, local δf gyrokinetic code is described. Unlike the current approach followed by a number of codes, it treats flow shear continuously in time. In the linear gyrokinetic equation, time-dependences arising from the presence of flow shear are decomposed in such a way that they can be treated explicitly in time with no stringent constraint on the time step. Flow shear related time dependences in the nonlinear term are taken into account exactly, and time dependences in the quasineutrality equation are interpolated. Test cases validating the continuous-in-time implementation in the code GS2 are presented. Lastly, nonlinear gyrokinetic simulations of a JET discharge illustrate the differences observed in turbulent transport compared with the usual, discrete-in-time approach. The continuous-in-time approach is shown, in some cases, to produce fluxes that converge to a different value than with the discrete approach. The new approach can also lead to substantial computational savings by requiring radially narrower boxes. At fixed box size, the continuous implementation is only modestly slower than the previous, discrete approach.