Making a Supermassive Star by Stellar Bombardment

ASTROPHYSICAL JOURNAL American Astronomical Society 892:1 (2020) ARTN 36

Authors:

Hiromichi Tagawa, Zoltan Haiman, Bence Kocsis

Abstract:

Approximately two hundred supermassive black holes (SMBHs) have been discovered within the first $\sim$Gyr after the Big Bang. One pathway for the formation of SMBHs is through the collapse of supermassive stars (SMSs). A possible obstacle to this scenario is that the collapsing gas fragments and forms a cluster of main-sequence stars. Here we raise the possibility that stellar collisions may be sufficiently frequent and energetic to inhibit the contraction of the massive protostar, avoiding strong UV radiation driven outflows, and allowing it to continue growing into an SMS. We investigate this scenario with semianalytic models incorporating star formation, gas accretion, dynamical friction from stars and gas, stellar collisions, and gas ejection. We find that when the collapsing gas fragments at a density of $\lesssim 3\times 10^{10}\,\mathrm{cm^{-3}}$, the central protostar contracts due to infrequent stellar mergers, and in turn photoevaporates the remaining collapsing gas, resulting in the formation of a $\lesssim 10^4~{\rm M_\odot}$ object. On the other hand, when the collapsing gas fragments at higher densities (expected for a metal-poor cloud with $Z\lesssim10^{-5}\,{\rm Z_\odot}$ with suppressed ${\rm H_2}$ abundance) the central protostar avoids contraction and keeps growing via frequent stellar mergers, reaching masses as high as $\sim 10^5-10^6\,{\rm M_\odot}$. We conclude that frequent stellar mergers represent a possible pathway to form massive BHs in the early universe.

Axion oscillations in binary systems: angle-action surgery

ArXiv 2003.10552 (2020)

Authors:

Vincent Desjacques, Evgeni Grishin, Yonadav Barry Ginat

Cosmic Evolution of Stellar-mass Black Hole Merger Rate in Active Galactic Nuclei

(2020)

Authors:

Y Yang, I Bartos, Z Haiman, B Kocsis, S Márka, H Tagawa

Role of collisionality and radiative cooling in supersonic plasma jet collisions of different materials

Physical Review E American Physical Society 101:2 (2020) 023205

Authors:

Collins, Valenzuela, Speliotopoulos, Aybar, Conti, Beg, Tzeferacos, Khiar, Gianluca Gregori

Abstract:

Currently there is considerable interest in creating scalable laboratory plasmas to study the mechanisms behind the formation and evolution of astrophysical phenomena such as Herbig-Haro objects and supernova remnants. Laboratory-scaled experiments can provide a well diagnosed and repeatable supplement to direct observations of these extraterrestrial objects if they meet similarity criteria demonstrating that the same physics govern both systems. Here, we present a study on the role of collision and cooling rates on shock formation using colliding jets from opposed conical wire arrays on a compact pulsed-power driver. These diverse conditions were achieved by changing the wire material feeding the jets, since the ion-ion mean free path (λmfp-ii) and radiative cooling rates (Prad) increase with atomic number. Low Z carbon flows produced smooth, temporally stable shocks. Weakly collisional, moderately cooled aluminum flows produced strong shocks that developed signs of thermal condensation instabilities and turbulence. Weakly collisional, strongly cooled copper flows collided to form thin shocks that developed inconsistently and fragmented. Effectively collisionless, strongly cooled tungsten flows interpenetrated, producing long axial density perturbations.

Fast magnetic reconnection in highly-extended current sheets at the National Ignition Facility

(2020)

Authors:

W Fox, DB Schaeffer, MJ Rosenberg, G Fiksel, J Matteucci, H-S Park, AFA Bott, K Lezhnin, A Bhattacharjee, D Kalantar, BA Remington, D Uzdensky, CK Li, FH Séguin, SX Hu