Impact of main ion pressure anisotropy on stellarator impurity transport

Nuclear Fusion IOP Publishing 60 (2019) 016035

Authors:

I Calvo, F Parra Diaz, JL Velasco, JM García-Regaña

Abstract:

Main ions influence impurity dynamics through a variety of mechanisms; in particular, via impurity-ion collisions. To lowest order in an expansion in the main ion mass over the impurity mass, the impurity-ion collision operator only depends on the component of the main ion distribution that is odd in the parallel velocity. These lowest order terms give the parallel friction of the impurities with the main ions, which is typically assumed to be the main cause of collisional impurity transport. Next-order terms in the mass ratio expansion of the impurity-ion collision operator, proportional to the component of the main ion distribution that is even in the parallel velocity, are usually neglected. However, in stellarators, the even component of the main ion distribution can be very large. In this article, such next-order terms in the mass ratio expansion of the impurity-ion collision operator are retained, and analytical expressions for the neoclassical radial flux of trace impurities are calculated in the Pfirsch-Schl\"uter, plateau and $1/\nu$ regimes. The new terms provide a drive for impurity transport that is physically very different from parallel friction: they are associated to anisotropy in the pressure of the main ions, which translates into impurity pressure anisotropy. It is argued that main ion pressure anisotropy must be taken into account for a correct description of impurity transport in certain realistic stellarator plasmas. Examples are given by numerically evaluating the analytical expressions for the impurity flux.

Non–adiabatic tidal oscillations induced by a planetary companion

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2019)

Authors:

Andrew Bunting, John CB Papaloizou, Caroline Terquem

Abstract:

Abstract We calculate the dynamical tides raised by a close planetary companion on non–rotating stars of 1 M⊙ and 1.4 M⊙. Using the Henyey method, we solve the fully non–adiabatic equations throughout the star. The horizontal Lagrangian displacement is found to be 10 to 100 times larger than the equilibrium tide value in a thin region near the surface of the star. This is because non–adiabatic effects dominate in a region that extends from below the outer edge of the convection zone up to the stellar surface, and the equilibrium tide approximation is inconsistent with non–adiabaticity. Although this approximation generally applies in the low frequency limit, it also fails in the parts of the convection zone where the forcing frequency is small but larger than the Brunt-Väisälä frequency. We derive analytical estimates which give a good approximation to the numerical values of the magnitude of the ratio of the horizontal and radial displacements at the surface. The relative surface flux perturbation is also significant, on the order of 0.1% for a system modelled on 51 Pegasi b. Observations affected by the horizontal displacement may therefore be more achievable than previously thought, and brightness perturbations may be the result of flux perturbations rather than due to the radial displacement. We discuss the implication of this on the possibility of detecting such tidally excited oscillations, including the prospect of utilising the large horizontal motion for observations of systems such as 51 Pegasi.

GW170817A as a Hierarchical Black Hole Merger

(2019)

Authors:

V Gayathri, I Bartos, Z Haiman, S Klimenko, B Kocsis, S Marka, Y Yang

Relaxation of spherical stellar systems

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 490:1 (2019) 478-490

Authors:

Jun Yan Lau, James Binney

Stabilisation of short-wavelength instabilities by parallel-to-the-field shear in long-wavelength $\mathbf{E} \times \mathbf{B}$ flows

(2019)

Authors:

MR Hardman, M Barnes, CM Roach