Axion resonances in binary pulsar systems
Journal of Cosmology and Astroparticle Physics IOP Publishing 2020:03 (2020) 061-061
GW170817A as a Hierarchical Black Hole Merger
ASTROPHYSICAL JOURNAL LETTERS American Astronomical Society 890:2 (2020) ARTN L20
Abstract:
Despite the rapidly growing number of stellar-mass binary black hole mergers discovered through gravitational waves, the origin of these binaries is still not known. In galactic centers, black holes can be brought to each others' proximity by dynamical processes, resulting in mergers. It is also possible that black holes formed in previous mergers encounter new black holes, resulting in so-called hierarchical mergers. Hierarchical events carry signatures such as higher-than usual black hole mass and spin. Here we show that the recently reported gravitational-wave candidate, GW170817A, could be the result of such a hierarchical merger. In particular, its chirp mass $\sim40$ M$_\odot$ and effective spin of $\chi_{\rm eff}\sim0.5$ are the typically expected values from hierarchical mergers within the disks of active galactic nuclei. We find that the reconstructed parameters of GW170817A strongly favor a hierarchical merger origin over having been produced by an isolated binary origin (with an Odds ratio of $>10^3$, after accounting for differences between the expected rates of hierarchical versus isolated mergers)Formation of SMBH seeds in Population III star clusters through collisions: the importance of mass loss
Monthly Notices of the Royal Astronomical Society Oxford University Press 493:2 (2020) 2352-2362
Abstract:
Runaway collisions in dense clusters may lead to the formation of supermassive black hole (SMBH) seeds, and this process can be further enhanced by accretion, as recent models of SMBH seed formation in Population III star clusters have shown. This may explain the presence of SMBHs already at high redshift, z > 6. However, in this context, mass loss during collisions was not considered and could play an important role for the formation of the SMBH seed. Here, we study the effect of mass loss, due to collisions of protostars, in the formation and evolution of a massive object in a dense primordial cluster. We consider both constant mass-loss fractions as well as analytic models based on the stellar structure of the collision components. Our calculations indicate that mass loss can significantly affect the final mass of the possible SMBH seed. Considering a constant mass loss of 5 per cent for every collision, we can lose between 60–80 per cent of the total mass that is obtained if mass loss were not considered. Using instead analytical prescriptions for mass loss, the mass of the final object is reduced by 15–40 per cent, depending on the accretion model for the cluster we study. Altogether, we obtain masses of the order of 104M⊙104M⊙, which are still massive enough to be SMBH seeds.Exploring the regime of validity of global gyrokinetic simulations with spherical tokamak plasmas
Nuclear Fusion IOP Publishing 60:2 (2020) 026005
Interpolation of Turbulent Magnetic Fields and Its Consequences on Cosmic Ray Propagation
The Astrophysical Journal American Astronomical Society 889:2 (2020) 123