Field reconstruction from proton radiography of intense laser driven magnetic reconnection

Physics of Plasmas AIP Publishing 26:8 (2019)

Authors:

CAJ Palmer, PT Campbell, Y Ma, L Antonelli, AFA Bott, Gianluca Gregori, J Halliday, Y Katzir, P Kordell, K Krushelnick, SV Lebedev, E Montgomery, M Notley, DC Carroll, CP Ridgers, Alexander Schekochihin, MJV Streeter, AGR Thomas, ER Tubman, N Woolsey, L Willingale

Abstract:

Magnetic reconnection is a process that contributes significantly to plasma dynamics and energy transfer in a wide range of plasma and magnetic field regimes, including inertial confinement fusion experiments, stellar coronae, and compact, highly magnetized objects like neutron stars. Laboratory experiments in different regimes can help refine, expand, and test the applicability of theoretical models to describe reconnection. Laser-plasma experiments exploring magnetic reconnection at a moderate intensity (IL ∼1014 W cm-2) have been performed previously, where the Biermann battery effect self-generates magnetic fields and the field dynamics studied using proton radiography. At high laser intensities (ILλL2>1018 Wcm-2μm2), relativistic surface currents and the time-varying electric sheath fields generate the azimuthal magnetic fields. Numerical modeling of these intensities has shown the conditions that within the magnetic field region can reach the threshold where the magnetic energy can exceed the rest mass energy such that σcold = B2/(μ0nemec2) > 1 [A. E. Raymond et al., Phys. Rev. E 98, 043207 (2018)]. Presented here is the analysis of the proton radiography of a high-intensity (∼1018 W cm-2) laser driven magnetic reconnection geometry. The path integrated magnetic fields are recovered using a "field-reconstruction algorithm" to quantify the field strengths, geometry, and evolution.

stella: An operator-split, implicit–explicit δf-gyrokinetic code for general magnetic field configurations

Journal of Computational Physics 391 (2019) 365-380

Authors:

M Barnes, FI Parra, M Landreman

Abstract:

Here we present details of an operator-split, implicit–explicit numerical scheme for the solution of the gyrokinetic-Poisson system of equations in the local limit. This scheme has been implemented in a new code called stella, which is capable of evolving electrostatic fluctuations with full kinetic electron effects and an arbitrary number of ion species in general magnetic geometry. We demonstrate the advantages of this mixed approach over a fully explicit treatment and provide linear and nonlinear benchmark comparisons for both axisymmetric and non-axisymmetric magnetic equilibria.

Tidal disruption events on to stellar black holes in triples

Monthly Notices of the Royal Astronomical Society 489:1 (2019) 727-737

Authors:

G Fragione, Nwc Leigh, R Perna, B Kocsis

Abstract:

© 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society Stars passing too close to a black hole can produce tidal disruption events (TDEs), when the tidal force across the star exceeds the gravitational force that binds it. TDEs have usually been discussed in relation to massive black holes that reside in the centres of galaxies or lurk in star clusters. We investigate the possibility that triple stars hosting a stellar black hole (SBH) may be sources of TDEs. We start from a triple system made up of three main-sequence stars and model the supernova (SN) kick event that led to the production of an inner binary comprised of an SBH. We evolve these triples with a high-precision N-body code and study their TDEs as a result of Kozai-Lidov oscillations. We explore a variety of distributions of natal kicks imparted during the SN event, various maximum initial separations for the triples, and different distributions of eccentricities. We show that the main parameter that governs the properties of the SBH-MS binaries that produce a TDE in triples is the mean velocity of the natal kick distribution. Smaller σ's lead to larger inner and outer semimajor axes of the systems that undergo a TDE, smaller SBH masses, and longer time-scales. We find that the fraction of systems that produce a TDE is roughly independent of the initial conditions, while estimate a TDE rate of 2.1 × 10−4-4.7 yr−1, depending on the prescriptions for the SBH natal kicks. This rate is almost comparable to the expected TDE rate for massive black holes.

The Rate of Stellar Mass Black Hole Scattering in Galactic Nuclei

ASTROPHYSICAL JOURNAL American Astronomical Society 881:1 (2019) ARTN 20

Authors:

Alexander Rasskazov, Bence Kocsis