Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
A VUV sub-micron hotspot for photoemission spectroscopy

Vacuum ultraviolet (VUV) lasers have exhibited great potential as the light source for various spectroscopies, which, if they can be focused into a smaller beam spot, will not only allow investigation of mesoscopic materials but also find applications in manufacture of nano-objects with excellent precision. Towards this goal, scientists in China invented a 177 nm VUV laser system that can achieve a record-small (<1 μm) focal spot at a long focal length (~45 mm). This system can be re-equipped for usage in low-cost ARPES and might benefit quantum materials, condensed matter physics and nanophotonics.

Prof Yulin Chen

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Electronic structures and photoemission spectroscopy
yulin.chen@physics.ox.ac.uk
Clarendon Laboratory, room RM263, Mullard Bldg.
Recent publications
  • About
  • Publications

A stable three-dimensional topological Dirac semimetal Cd3 As2

Nature Materials 13:7 (2014) 677-681

Authors:

ZK Liu, J Jiang, B Zhou, ZJ Wang, Y Zhang, HM Weng, D Prabhakaran, SK Mo, H Peng, P Dudin, T Kim, M Hoesch, Z Fang, X Dai, ZX Shen, DL Feng, Z Hussain, YL Chen

Abstract:

Three-dimensional (3D) topological Dirac semimetals (TDSs) are a recently proposed state of quantum matter 1-6that have attracted increasing attention in physics and materials science. A 3D TDS is not only a bulk analogue of graphene; it also exhibits non-trivial topology in its electronic structure that shares similarities with topological insulators. Moreover, a TDS can potentially be driven into other exotic phases (such as Weyl semimetals, axion insulators and topological superconductors), making it a unique parent compound for the study of these states and the phase transitions between them. Here, by performing angle-resolved photoemission spectroscopy, we directly observe a pair of 3D Dirac fermions in Cd3 As2, proving that it is a model 3D TDS. Compared with other 3D TDSs, for example, β-cristobalite BiO2 (ref.) and Na 3 Bi (refs,), Cd3 As2 is stable and has much higher Fermi velocities. Furthermore, by in situ doping we have been able to tune its Fermi energy, making it a flexible platform for exploring exotic physical phenomena. © 2014 Macmillan Publishers Limited. All rights reserved.
More details from the publisher

Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2

Nature Nanotechnology 9:2 (2014) 111-115

Authors:

Y Zhang, TR Chang, B Zhou, YT Cui, H Yan, Z Liu, F Schmitt, J Lee, R Moore, Y Chen, H Lin, HT Jeng, SK Mo, Z Hussain, A Bansil, ZX Shen

Abstract:

Quantum systems in confined geometries are host to novel physical phenomena. Examples include quantum Hall systems in semiconductors and Dirac electrons in graphene. Interest in such systems has also been intensified by the recent discovery of a large enhancement in photoluminescence quantum efficiency and a potential route to valleytronics in atomically thin layers of transition metal dichalcogenides, MX2 (M = Mo, W; X = S, Se, Te), which are closely related to the indirect-to-direct bandgap transition in monolayers. Here, we report the first direct observation of the transition from indirect to direct bandgap in monolayer samples by using angle-resolved photoemission spectroscopy on high-quality thin films of MoSe2 with variable thickness, grown by molecular beam epitaxy. The band structure measured experimentally indicates a stronger tendency of monolayer MoSe2 towards a direct bandgap, as well as a larger gap size, than theoretically predicted. Moreover, our finding of a significant spin-splitting of ∼180 meV at the valence band maximum of a monolayer MoSe2 film could expand its possible application to spintronic devices. © 2014 Macmillan Publishers Limited. All rights reserved.
More details from the publisher

Discovery of a three-dimensional topological dirac semimetal, Na 3Bi

Science 343:6173 (2014) 864-867

Authors:

ZK Liu, B Zhou, Y Zhang, ZJ Wang, HM Weng, D Prabhakaran, SK Mo, ZX Shen, Z Fang, X Dai, Z Hussain, YL Chen

Abstract:

Three-dimensional (3D) topological Dirac semimetals (TDSs) represent an unusual state of quantum matter that can be viewed as "3D graphene." In contrast to 2D Dirac fermions in graphene or on the surface of 3D topological insulators, TDSs possess 3D Dirac fermions in the bulk. By investigating the electronic structure of Na3Bi with angle-resolved photoemission spectroscopy, we detected 3D Dirac fermions with linear dispersions along all momentum directions. Furthermore, we demonstrated the robustness of 3D Dirac fermions in Na3Bi against in situ surface doping. Our results establish Na3Bi as a model system for 3D TDSs, which can serve as an ideal platform for the systematic study of quantum phase transitions between rich topological quantum states.
More details from the publisher

Selective-area van der waals epitaxy of topological insulator grid nanostructures for broadband transparent flexible electrodes

Advanced Materials 25:41 (2013) 5959-5964

Authors:

Y Guo, M Aisijiang, K Zhang, W Jiang, Y Chen, W Zheng, Z Song, J Cao, Z Liu, H Peng

Abstract:

Broadband transparent electrodes based on a two-dimensional grid of topological insulator Bi2Se3 are synthesized by a facile selective-area van der Waals epitaxy method. These two-dimensional grid electrodes exhibit high uniformity over large area, outstanding mechanical durability, and excellent chemical resistance to environmental perturbations. Remarkably, the topological grid electrode has high transmittance of more than 85% from the visible to the near-infrared region. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
More details from the publisher

Discovery of a single topological Dirac fermion in the strong inversion asymmetric compound BiTeCl

Nature Physics (2013)

Authors:

YL Chen, B Zhou, PS Kirchmann, RG Moore, M Kanou, T Sasagawa, ZK Liu, HJ Zhang, JA Sobota, D Leuenberger, S-L Yang, ZX Shen, XL Qi, SK Mo, Z Hussain, DH Lu

Abstract:

In the past few years, a new state of quantum matter known as the time-reversal-invariant topological insulator has been predicted theoretically and realized experimentally. All of the topological insulators discovered so far in experiment are inversion symmetric-except for strained HgTe, which has weak inversion asymmetry, a small bulk gap but no bulk charge polarization. Strong inversion asymmetry in topological insulators would not only lead to many interesting phenomena, such as crystalline-surface-dependent topological electronic states, pyroelectricity and intrinsic topological p-n junctions, but would also serve as an ideal platform for the realization of topological magneto-electric effects, which result from the modification of Maxwell equations in topological insulators. Here we report the discovery of a strong inversion asymmetric topological insulator phase in BiTeCl by angle-resolved photoemission spectroscopy, which reveals Dirac surface states and crystalline-surface-dependent electronic structures. Moreover, we observe a tenfold increase of the bulk energy gap in BiTeCl over the weak inversion asymmetric topological insulator HgTe, making it a promising platform for topological phenomena and possible applications at high temperature.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 39
  • Page 40
  • Page 41
  • Page 42
  • Current page 43
  • Page 44
  • Page 45
  • Page 46
  • Page 47
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet