Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
A VUV sub-micron hotspot for photoemission spectroscopy

Vacuum ultraviolet (VUV) lasers have exhibited great potential as the light source for various spectroscopies, which, if they can be focused into a smaller beam spot, will not only allow investigation of mesoscopic materials but also find applications in manufacture of nano-objects with excellent precision. Towards this goal, scientists in China invented a 177 nm VUV laser system that can achieve a record-small (<1 μm) focal spot at a long focal length (~45 mm). This system can be re-equipped for usage in low-cost ARPES and might benefit quantum materials, condensed matter physics and nanophotonics.

Prof Yulin Chen

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Electronic structures and photoemission spectroscopy
yulin.chen@physics.ox.ac.uk
Clarendon Laboratory, room RM263, Mullard Bldg.
Recent publications
  • About
  • Publications

Selective-area van der waals epitaxy of topological insulator grid nanostructures for broadband transparent flexible electrodes

Advanced Materials 25:41 (2013) 5959-5964

Authors:

Y Guo, M Aisijiang, K Zhang, W Jiang, Y Chen, W Zheng, Z Song, J Cao, Z Liu, H Peng

Abstract:

Broadband transparent electrodes based on a two-dimensional grid of topological insulator Bi2Se3 are synthesized by a facile selective-area van der Waals epitaxy method. These two-dimensional grid electrodes exhibit high uniformity over large area, outstanding mechanical durability, and excellent chemical resistance to environmental perturbations. Remarkably, the topological grid electrode has high transmittance of more than 85% from the visible to the near-infrared region. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
More details from the publisher

Discovery of a single topological Dirac fermion in the strong inversion asymmetric compound BiTeCl

Nature Physics (2013)

Authors:

YL Chen, B Zhou, PS Kirchmann, RG Moore, M Kanou, T Sasagawa, ZK Liu, HJ Zhang, JA Sobota, D Leuenberger, S-L Yang, ZX Shen, XL Qi, SK Mo, Z Hussain, DH Lu

Abstract:

In the past few years, a new state of quantum matter known as the time-reversal-invariant topological insulator has been predicted theoretically and realized experimentally. All of the topological insulators discovered so far in experiment are inversion symmetric-except for strained HgTe, which has weak inversion asymmetry, a small bulk gap but no bulk charge polarization. Strong inversion asymmetry in topological insulators would not only lead to many interesting phenomena, such as crystalline-surface-dependent topological electronic states, pyroelectricity and intrinsic topological p-n junctions, but would also serve as an ideal platform for the realization of topological magneto-electric effects, which result from the modification of Maxwell equations in topological insulators. Here we report the discovery of a strong inversion asymmetric topological insulator phase in BiTeCl by angle-resolved photoemission spectroscopy, which reveals Dirac surface states and crystalline-surface-dependent electronic structures. Moreover, we observe a tenfold increase of the bulk energy gap in BiTeCl over the weak inversion asymmetric topological insulator HgTe, making it a promising platform for topological phenomena and possible applications at high temperature.
More details from the publisher
More details

Magnetic properties of gadolinium substituted Bi2Te3 thin films

Applied Physics Letters 102 (2013) 242412

Authors:

S Li, SA Harrison, Y Huo, A Pushp, HT Yuan, B Zhou, AJ Kellock, SSP Parkin, Y-L Chen, T Hesjedal, JS Harris

Abstract:

Thin film GdBiTe3 has been proposed as a candidate material in which to observe the quantum anomalous Hall effect. As a thermal non-equilibrium deposition method, molecular beam epitaxy (MBE) has the ability to incorporate large amounts of Gd into Bi2Te3 crystal structures. High-quality rhombohedral (GdxBi1−x)2Te3 films with substitutional Gd concentrations of x ≤ 0.4 were grown by MBE. Angle-resolved photoemission spectroscopy shows that the topological surface state remains intact up to the highest Gd concentration. Magnetoresistance measurements show weak antilocalization, indicating strong spin orbit interaction. Magnetometry reveals that the films are paramagnetic with a magnetic moment of 6.93 μB per Gd3+ ion.
More details from the publisher
More details

Measurement of Coherent Polarons in the Strongly Coupled Antiferromagnetically Ordered Iron-Chalcogenide Fe_{1.02}Te using Angle-Resolved Photoemission Spectroscopy

PRL American Physical Society 110:3 (2013) 037003

Authors:

ZK Liu, RH He, DH Lu, M Yi, YL Chen, M Hashimoto, RG Moore, SK Mo, EA Nowadnick, J Hu, TJ Liu, ZQ Mao, TP Devereaux, Z Hussain, ZX Shen
More details
More details from the publisher
More details
More details

Discovery of a single topological Dirac fermion in the strong inversion asymmetric compound BiTeCl

Nature Physics 9:11 (2013) 704-708

Authors:

YL Chen, M Kanou, ZK Liu, HJ Zhang, JA Sobota, D Leuenberger, SK Mo, B Zhou, SL Yang, PS Kirchmann, DH Lu, RG Moore, Z Hussain, ZX Shen, XL Qi, T Sasagawa

Abstract:

In the past few years, a new state of quantum matter known as the time-reversal-invariant topological insulator has been predicted theoretically and realized experimentally. All of the topological insulators discovered so far in experiment are inversion symmetric - except for strained HgTe, which has weak inversion asymmetry, a small bulk gap but no bulk charge polarization. Strong inversion asymmetry in topological insulators would not only lead to many interesting phenomena, such as crystalline-surface-dependent topological electronic states, pyroelectricity and intrinsic topological p-n junctions, but would also serve as an ideal platform for the realization of topological magneto-electric effects, which result from the modification of Maxwell equations in topological insulators. Here we report the discovery of a strong inversion asymmetric topological insulator phase in BiTeCl by angle-resolved photoemission spectroscopy, which reveals Dirac surface states and crystalline-surface-dependent electronic structures. Moreover, we observe a tenfold increase of the bulk energy gap in BiTeCl over the weak inversion asymmetric topological insulator HgTe, making it a promising platform for topological phenomena and possible applications at high temperature. © 2013 Macmillan Publishers Limited.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 40
  • Page 41
  • Page 42
  • Page 43
  • Current page 44
  • Page 45
  • Page 46
  • Page 47
  • Page 48
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet