Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Prof Ramin Golestanian

Professor of Theoretical Condensed Matter Physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Ramin.Golestanian@physics.ox.ac.uk
Telephone: 01865 273974
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Max Planck Institute for Dynamics and Self-Organization
Oxford Podcast (2014): Living Matter & Theo Phys
Oxford Podcast (2017): The bacterial Viewpoint
  • About
  • Teaching
  • Publications

Reply to Comment on "Enhanced diffusion of enzymes that catalyze exothermic reactions"

(2016)
More details from the publisher
Details from ArXiV

Effective dynamics of microorganisms that interact with their own trail

Physical Review Letters American Physical Society (2016)

Authors:

Ramin Golestanian, Anatolij Gelimson, W Till Kranz, Kun Zhao, Gerard CL Wong

Abstract:

Like ants, some microorganisms are known to leave trails on surfaces to communicate. We explore how trail-mediated self-interaction could affect the behavior of individual microorganisms when diffusive spreading of the trail is negligible on the timescale of the microorganism using a simple phenomenological model for an actively moving particle and a finite-width trail. The effective dynamics of each microorganism takes on the form of a stochastic integral equation with the trail interaction appearing in the form of short-term memory. For moderate coupling strength below an emergent critical value, the dynamics exhibits effective diffusion in both orientation and position after a phase of superdiffusive reorientation. We report experimental verification of a seemingly counterintuitive perpendicular alignment mechanism that emerges from the model.
More details from the publisher
Details from ORA
More details
More details

Active micromachines: Microfluidics powered by mesoscale turbulence

Science Advances American Association for the Advancement of Science (2016)

Authors:

Julia Yeomans, Amin Doostmohammadi, Tyler N Shendruk, Sumesh P Thampi, Ramin Golestanian

Abstract:

Dense active matter, from bacterial suspensions and microtubule bundles driven by motor proteins to cellular monolayers and synthetic Janus particles, is characterised by mesoscale turbulence, the emergence of chaotic flow structures. By immersing an ordered array of symmetric rotors in an active fluid, we introduce a microfluidic system that exploits spontaneous symmetry breaking in mesoscale turbulence to generate work. The lattice of rotors self-organises into a spin-state where neighbouring discs continuously rotate in permanent alternating directions due to combined hydrodynamic and elastic effects. Our virtual prototype demonstrates a new research direction for the design of micromachines powered by the nematohydrodynamic properties of active turbulence.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

The Power Spectrum of Ionic Nanopore Currents: The Role of Ion Correlations

Nano Letters American Chemical Society (ACS) 16:4 (2016) 2205-2212

Authors:

Mira Zorkot, Ramin Golestanian, Douwe Jan Bonthuis
More details from the publisher
More details
More details

Species-dependent hydrodynamics of flagellum-tethered bacteria in early biofilm development

Journal of The Royal Society Interface The Royal Society 13:115 (2016) 20150966

Authors:

Rachel R Bennett, Calvin K Lee, Jaime De Anda, Kenneth H Nealson, Fitnat H Yildiz, George A O'Toole, Gerard CL Wong, Ramin Golestanian
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 33
  • Page 34
  • Page 35
  • Page 36
  • Current page 37
  • Page 38
  • Page 39
  • Page 40
  • Page 41
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet