Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Prof Ramin Golestanian

Professor of Theoretical Condensed Matter Physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Ramin.Golestanian@physics.ox.ac.uk
Telephone: 01865 273974
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Max Planck Institute for Dynamics and Self-Organization
Oxford Podcast (2014): Living Matter & Theo Phys
Oxford Podcast (2017): The bacterial Viewpoint
  • About
  • Teaching
  • Publications

High-Speed "4D" Computational Microscopy of Bacterial Surface Motility

ACS NANO 11:9 (2017) 9340-9351

Authors:

Jaime de Anda, Ernest Y Lee, Calvin K Lee, Rachel R Bennett, Xian Ji, Soheil Soltani, Mark C Harrison, Amy E Baker, Yun Luo, Tom Chou, George A O'Toole, Andrea M Armani, Ramin Golestanian, Gerard CL Wong
More details from the publisher

Multicellular self-organization of P. aeruginosa due to interactions with secreted trails

Physical Review Letters American Physical Society (2016)

Authors:

Anatolij Gelimson, Kun Zhao, Calvin K Lee, W Till Kranz, Gerard CL Wong, Ramin Golestanian

Abstract:

Guided movement in response to slowly diffusing polymeric trails provides a unique mechanism for self-organization of some microorganisms. To elucidate how this signaling route leads to microcolony formation, we experimentally probe the trajectory and orientation of Pseudomonas aeruginosa that propel themselves on a surface using type IV pili motility appendages, which preferentially attach to deposited exopolysaccharides. We construct a stochastic model by analyzing single-bacterium trajectories, and show that the resulting theoretical prediction for the many-body behavior of the bacteria is in quantitative agreement with our experimental characterization of how cells explore the surface via a power law strategy.
More details from the publisher
Details from ORA
More details
More details

Current fluctuations in nanopores: The effects of electrostatic and hydrodynamic interactions

The European Physical Journal Special Topics Springer Nature 225:8-9 (2016) 1583-1594

Authors:

Mira Zorkot, Ramin Golestanian, Douwe Jan Bonthuis
More details from the publisher

Reply to Comment on "Enhanced diffusion of enzymes that catalyze exothermic reactions"

(2016)
More details from the publisher
Details from ArXiV

Effective dynamics of microorganisms that interact with their own trail

Physical Review Letters American Physical Society (2016)

Authors:

Ramin Golestanian, Anatolij Gelimson, W Till Kranz, Kun Zhao, Gerard CL Wong

Abstract:

Like ants, some microorganisms are known to leave trails on surfaces to communicate. We explore how trail-mediated self-interaction could affect the behavior of individual microorganisms when diffusive spreading of the trail is negligible on the timescale of the microorganism using a simple phenomenological model for an actively moving particle and a finite-width trail. The effective dynamics of each microorganism takes on the form of a stochastic integral equation with the trail interaction appearing in the form of short-term memory. For moderate coupling strength below an emergent critical value, the dynamics exhibits effective diffusion in both orientation and position after a phase of superdiffusive reorientation. We report experimental verification of a seemingly counterintuitive perpendicular alignment mechanism that emerges from the model.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 33
  • Page 34
  • Page 35
  • Page 36
  • Current page 37
  • Page 38
  • Page 39
  • Page 40
  • Page 41
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet