Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Prof. Patrick Irwin

Professor of Planetary Physics

Research theme

  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Exoplanet atmospheres
  • Planetary atmosphere observation analysis
  • Solar system
patrick.irwin@physics.ox.ac.uk
Telephone: 01865 (2)72083
Atmospheric Physics Clarendon Laboratory, room 306
Personal research page
NEMESIS
  • About
  • Publications

A Search for the Near‐Surface Particulate Layer Using Venera 13 In Situ Spectroscopic Observations

Journal of Geophysical Research: Planets American Geophysical Union 130:4 (2025) e2024JE008728

Authors:

Shubham V Kulkarni, Patrick GJ Irwin, Colin F Wilson, Nikolai I Ignatiev

Abstract:

Whether or not there is a particulate layer in the lowest 10 km of the Venusian atmosphere is still an open question. Some of the past in situ experiments showed the presence of a detached particulate layer, and a few suggested the existence of finely dispersed aerosols, while other instruments supported the idea of no particulate matter in the deep atmosphere. In this work, we investigate the presence of a near‐surface particulate layer (NSPL) using in situ data from the Venera 13 mission. While the original spectrophotometric data from Venera 13 were lost, we have reconstructed a part of this data by digitizing the old graphic material and selected the eight most reliable Venera 13 downward radiance profiles from 0.48 to 0.8 μ ${\upmu }$ m for our retrievals. The retrievals suggest the existence of the particulate layer with a peak in the altitude range of 3.5–5 km. They further indicate a log‐normal particle size distribution with a mean radius between 0.6 and 0.85 μ ${\upmu }$ m. The retrievals constrain the real refractive index of the particles to lie around the range of 1.4–1.6, with the imaginary refractive index of a magnitude of 10 − 3 ${10}^{-3}$ . Based on refractive index retrievals, uplifted basalt particles or volcanic ash could be responsible for near‐surface particulates. In comparison, volatile condensates appear less likely to be behind the formation of NSPL.
More details from the publisher
Details from ORA
More details

Constraining Exoplanetary Clouds with Jupiter Observations: Insights from Juno & JWST

Copernicus Publications (2025)

Authors:

Francesco Biagiotti, Davide Grassi, Tristan Guillot, Sushil K Atreya, Leigh N Fletcher, Patrick Irwin, Giuseppe Piccioni, Alessandro Mura, Imke de Pater, Thierry Fouchet, Oliver RT King, Michael T Roman, Jake Harkett, Henrik Melin, Simon Toogood, Glenn Orton, Federico Tosi, Christina Plainaki, Giuseppe Sindoni, Scott Bolton
More details from the publisher

The bolometric Bond albedo and energy balance of Uranus

ArXiv 2502.18971 (2025)

Authors:

Patrick GJ Irwin, Daniel D Wenkert, Amy A Simon, Emma Dahl, Heidi B Hammel
Details from ArXiV

Improved Constraints on the Vertical Profile of CH4 at Jupiter’s Mid- to High Latitudes, Using IRTF-TEXES and SOFIA-EXES Spectroscopy

The Planetary Science Journal American Astronomical Society 6:1 (2025) 15-15

Authors:

James A Sinclair, Thomas K Greathouse, Rohini S Giles, Matthew Richter, Maisie Rashman, Curtis de Witt, Julianne Moses, Vincent Hue, Pablo Rodríguez-Ovalle, Thierry Fouchet, Ananyo Bhattacharya, Bilal Benmahi, Glenn S Orton, Leigh N Fletcher, Patrick GJ Irwin

Abstract:

<jats:title>Abstract</jats:title> <jats:p>We present radiative transfer analyses of IRTF-TEXES and SOFIA-EXES mid-infrared spectra of Jupiter's mid- to high latitudes recorded between 2019 April 16 and 2023 July 20. The spectra were inverted across a photochemical model grid of varying eddy diffusion coefficient profiles, and the quality of fit of the synthetic spectra to the observed was used to constrain the CH<jats:sub>4</jats:sub> homopause level. For a subset of latitudes/dates, we find that the CH<jats:sub>4</jats:sub> homopause level is elevated in the region enclosed inside of, or magnetospherically poleward of, the northern ultraviolet main auroral emissions (MAEs) in comparison to the region outside or equatorward of the MAE. For example, using SOFIA-EXES results on 2021 June 10, we derived a CH<jats:sub>4</jats:sub> homopause level of log(<jats:italic>p</jats:italic> <jats:sub>H</jats:sub>(nbar)) = 1.54<jats:inline-formula> <jats:tex-math> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow/> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.69</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.51</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> </jats:inline-formula> or <jats:italic>z</jats:italic> <jats:sub>H</jats:sub> = 453<jats:inline-formula> <jats:tex-math> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow/> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>76</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>128</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> </jats:inline-formula> km above 1 bar poleward of the northern MAE at 68<jats:sup>∘</jats:sup>N compared to a lower limit of log(<jats:italic>p</jats:italic> <jats:sub>H</jats:sub>) &gt; 2.43 and upper limit of <jats:italic>z</jats:italic> <jats:sub>H</jats:sub> &lt; 322 km derived equatorward of the northern MAE. We therefore conclude that the region poleward of the northern MAE is, at times, subject to enhanced vertical transport resulting from auroral energy deposition. The exact mechanisms responsible for the enhanced vertical transport in Jupiter's auroral regions are uncertain: time-dependent circulation modeling of Jupiter's polar atmosphere is required to better understand this phenomenon. Poleward of the southern MAE, derived homopause levels agreed within uncertainty with those at equatorward locations. However, we consider this result a spatial sampling artifact rather than concluding that the southern auroral region is not subject to enhanced vertical transport.</jats:p>
More details from the publisher
More details

Methane precipitation in ice giant atmospheres

Astronomy & Astrophysics EDP Sciences (2025)

Authors:

D Toledo, Pascal Rannou, Patrick Irwin, Bruno de Batz de Trenquelléon, Michael Roman, Victor Apestigue, Ignacio Arruego, Margarita Yela

Abstract:

<jats:p>Voyager-2 radio occultation measurements have revealed changes in the atmospheric refractivity within a 2-4 km layer near the 1.2-bar level in Uranus and the 1.6-bar level in Neptune. These changes were attributed to the presence of a methane cloud, consistent with the observation that methane concentration decreases with altitude above these levels, closely following the saturation vapor pressure. However, no clear spectral signatures of such a cloud have been detected thus far in the spectra acquired from both planets. We examine methane cloud properties in the atmospheres of the ice giants, including vertical ice distribution, droplet radius, precipitation rates, timescales, and total opacity, employing microphysical simulations under different scenarios. We used a one-dimensional (1D) cloud microphysical model to simulate the formation of methane clouds in the ice giants. The simulations include the processes of nucleation, condensation, coagulation, evaporation, and precipitation, with vertical mixing simulated using an eddy-diffusion profile (K_eddy). Our simulations show cloud bases close to 1.24 bars in Uranus and 1.64 bars in Neptune, with droplets up to 100 μm causing high settling velocities and precipitation rates (∼370 mm per Earth year). The high settling velocities limit the total cloud opacity, yielding values at 0.8 μm of ∼0.19 for Uranus and ∼0.35 for Neptune, using K_ eddy = 0.5 m^2 s^-1 and a deep methane mole fraction (μ_CH_4) of 0.04. In addition, lower K_ eddy or μ_CH_4 values result in smaller opacities. Methane supersaturation is promptly removed by condensation, controlling the decline in μ_CH_4 with altitude in the troposphere. However, the high settling velocities prevent the formation of a permanent thick cloud. Stratospheric hazes made of ethane or acetylene ice are expected to evaporate completely before reaching the methane condensation level. Since hazes are required for methane heterogeneous nucleation, this suggests either a change in the solid phase properties of the haze particles, inhibiting evaporation, or the presence of photochemical hazes.</jats:p>
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Current page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet