Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Cosmic whirls in rust
Credit: R Shetty, K Jani, H Jani

Hariom Jani

Royal Society - University Research Fellow

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Oxide electronics
hariom.jani@physics.ox.ac.uk
Clarendon Laboratory, room 276, Level 2
Google Scholar
Youtube
  • About
  • Open PhD projects
  • Honors & Awards
  • Grants
  • Invited Talks & Lectures
  • Teaching & Outreach
  • Publications

Computing with rust

Harnessing whirls in iron-oxide

Where’s the very last place you would look if you wanted a new material to make computer memory? The compost heap or the scrap yard, probably. So who came up with the idea of using rust? Singapore’s Hariom Jani did. And he’s here to tell you it’s the futu

Cosmic strings in rust

Unravelling a new many-body large-hole polaron in a transition metal oxide that promotes high photocatalytic activity

NPG Asia Materials Springer Nature 14:1 (2022) 19

Authors:

Xiao Chi, Lily Mandal, Cuibo Liu, Angga Dito Fauzi, Anindita Chaudhuri, Thomas J Whitcher, Hariom Kirit Jani, Zhongxin Chen, Shibo Xi, Caozheng Diao, Muhammad Avicenna Naradipa, Xiaojiang Yu, Ping Yang, Antonio Helio Castro-Neto, Mark BH Breese, Kian Ping Loh, Thirumalai Venky Venkatesan, Andrivo Rusydi
More details from the publisher

Experimental Evidence of t_{2g} Electron-Gas Rashba Interaction Induced by Asymmetric Orbital Hybridization.

Physical review letters 129:18 (2022) 187203

Authors:

GJ Omar, WL Kong, H Jani, MS Li, J Zhou, ZS Lim, S Prakash, SW Zeng, S Hooda, T Venkatesan, YP Feng, SJ Pennycook, L Shen, A Ariando

Abstract:

We report the control of Rashba spin-orbit interaction by tuning asymmetric hybridization between Ti orbitals at the LaAlO_{3}/SrTiO_{3} interface. This asymmetric orbital hybridization is modulated by introducing a LaFeO_{3} layer between LaAlO_{3} and SrTiO_{3}, which alters the Ti-O lattice polarization and traps interfacial charge carriers, resulting in a large Rashba spin-orbit effect at the interface in the absence of an external bias. This observation is verified through high-resolution electron microscopy, magnetotransport and first-principles calculations. Our results open hitherto unexplored avenues of controlling Rashba interaction to design next-generation spin orbitronics.
More details from the publisher
More details
More details

Route towards stable homochrial topological textures in A-type antiferromagnets

Physical Review B American Physical Society 105 (2022) 224424

Authors:

Jack Harrison, Hariom Jani, Paolo G Radaelli

Abstract:

Topologically protected whirling magnetic textures could emerge as data carriers in next-generation post-Moore computing. Such textures are abundantly observed in ferromagnets (FMs); however, their antiferromagnetic (AFM) counterparts are expected to be even more relevant for device applications, as they promise ultrafast, deflection-free dynamics while being robust against external fields. Unfortunately, such textures have remained elusive; hence identifying materials hosting them is key to developing this technology. Here, we present comprehensive micromagnetic and analytical models investigating topological textures in the broad material class of A-type antiferromagnets, specifically focusing on the prototypical case of α-Fe2O3—an emerging candidate for AFM spintronics. By exploiting a symmetry-breaking interfacial Dzyaloshinskii-Moriya interaction (iDMI), it is possible to stabilize a wide topological family, including AFM (anti)merons, bimerons, and the hitherto undiscovered AFM skyrmions. While iDMI enforces homochirality and improves the stability of these textures, the widely tunable anisotropy and exchange interactions enable precise control of their core dimensions. We then present a unifying framework to model the scaling of texture sizes based on a simple dimensional analysis. As the parameters required to host and tune homochiral AFM textures may be obtained by rational materials design of α-Fe2O3, it could emerge as a promising platform to initiate AFM topological spintronics.

More details from the publisher
Details from ORA
More details

Route towards stable homochiral topological textures in A -type antiferromagnets

Physical Review B American Physical Society (APS) 105:22 (2022) 224424

Authors:

Jack Harrison, Hariom Jani, Paolo G Radaelli
More details from the publisher

A cost-effective quantum eraser demonstration

(2022)

Authors:

Aarushi Khandelwal, Jit Bin Joseph Tan, Tze Kwang Leong, Yarong Yang, T Venkatesan, Hariom Jani
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet