Tunable and Enhanced Rashba Spin-Orbit Coupling in Iridate-Manganite Heterostructures
(2020)
Direct Growth of Wafer-Scale, Transparent, p-Type Reduced-Graphene-Oxide-like Thin Films by Pulsed Laser Deposition.
ACS nano 14:3 (2020) 3290-3298
Abstract:
Reduced graphene oxide (rGO) has attracted significant interest in an array of applications ranging from flexible optoelectronics, energy storage, sensing, and very recently as membranes for water purification. Many of these applications require a reproducible, scalable process for the growth of large-area films of high optical and electronic quality. In this work, we report a one-step scalable method for the growth of reduced-graphene-oxide-like (rGO-like) thin films via pulsed laser deposition (PLD) of sp2 carbon in an oxidizing environment. By deploying an appropriate laser beam scanning technique, we are able to deposit wafer-scale uniform rGO-like thin films with ultrasmooth surfaces (roughness <1 nm). Further, in situ control of the growth environment during the PLD process allows us to tailor its hybrid sp2-sp3 electronic structure. This enables us to control its intrinsic optoelectronic properties and helps us achieve some of the lowest extinction coefficients and refractive index values (0.358 and 1.715, respectively, at 2.236 eV) as compared to chemically grown rGO films. Additionally, the transparency and conductivity metrics of our PLD grown thin films are superior to other p-type rGO films and conducting oxides. Unlike chemical methods, our growth technique is devoid of catalysts and is carried out at lower process temperatures. This would enable the integration of these thin films with a wide range of material heterostructures via direct growth.Chalcogenide Phase Change Material for Active Terahertz Photonics.
Advanced materials (Deerfield Beach, Fla.) 31:12 (2019) e1808157
Abstract:
The strikingly contrasting optical properties of various phases of chalcogenide phase change materials (PCM) has recently led to the development of novel photonic devices such as all-optical non-von Neumann memory, nanopixel displays, color rendering, and reconfigurable nanoplasmonics. However, the exploration of chalcogenide photonics is currently limited to optical and infrared frequencies. Here, a phase change material integrated terahertz metamaterial for multilevel nonvolatile resonance switching with spatial and temporal selectivity is demonstrated. By controlling the crystalline proportion of the PCM film, multilevel, non-volatile, terahertz resonance switching states with long retention time at zero hold power are realized. Spatially selective reconfiguration at sub-metamaterial scale is shown by delivering electrical stimulus locally through designer interconnect architecture. The PCM metamaterial also features ultrafast optical modulation of terahertz resonances with tunable switching speed based on the crystalline order of the PCM film. The multilevel nonvolatile, spatially selective, and temporally tunable PCM metamaterial will provide a pathway toward development of novel and disruptive terahertz technologies including spatio-temporal terahertz modulators for high speed wireless communication, neuromorphic photonics, and machine-learning metamaterials.Corrigendum: Robust resistive memory devices using solution-processable metal-coordinated azo aromatics.
Nature materials 17:1 (2017) 103