Multivalent ligands regulate dimensional engineering for inverted perovskite solar modules.
Science (New York, N.Y.) 391:6781 (2026) 153-159
Abstract:
Multivalent, resonance-stabilized amidinium ligands enable stronger chemical coordination and reduced deprotonation compared with conventional monovalent ammonium ligands in low-dimensional perovskites. Here, we introduce a controllable one- to two-dimensional (1D-to-2D) structural transition strategy by systematically tuning ligand conformation, thereby modulating hydrogen bonding, π-π stacking, and basicity to elucidate the relationship between molecular structure, interfacial interactions, and resulting dimensionality. The 1D-amidinium perovskite structure, with its pronounced geometric anisotropy, impedes uniform surface coverage and defect passivation. In contrast, the 2D-amidinium perovskite forms a continuous, homogeneous interfacial layer, enabling more effective defect passivation and favorable energy-level alignment. With dimensionality control, inverted 3D/2D-amidinium perovskite solar cells deliver 25.4% power conversion efficiency (1.1 square centimeters, steady-state certified) and maintain >95% of their initial efficiency after 1100 hours of continuous 1-sun operation at 85°C.Closed-loop manufacturing for sustainable perovskite photovoltaics
Nature Reviews Materials Springer Nature (2025) 1-16
Abstract:
Perovskite solar cells (PSCs) are emerging as a particularly promising technology to enhance the world’s renewable energy generation capacity. As PSCs are transitioning from research to industrial-scale production, there is an important opportunity to establish sustainable manufacturing pathways. Here, we present a closed-loop framework for the development of environmentally sustainable PSCs and highlight strategies to achieve this vision. First, we analyse the sourcing of raw materials and compare two established PSC fabrication techniques, vapour-phase deposition and solution processing, evaluating their respective advantages and limitations in terms of economic feasibility and environmental impact. Second, we examine solution processing methods, focusing on solvent system design for the preparation of high-quality perovskite films and on the use of non-hazardous or less-hazardous solvents. Third, we examine potential lead-release concerns during PSC operation and discuss approaches to minimize associated environmental risks. Fourth, we summarize effective recycling methods for main PSC components to support a circular production model. Finally, we identify key challenges and outline future research directions to achieve fully sustainable, closed-loop PSC technologies.Accelerated Data-Driven Discovery of Dual-Functional Ionic Liquid Passivation for FAPbI3 Perovskite Solar Cells Using Graph Neural Network
Ecomat 7:11 (2025)
Abstract:
Achieving efficient and stable formamidinium lead iodide (FAPbINanoscale soft interaction-engineered perovskite heterojunctions for highly efficient and reproducible solar cells
Nature Communications Nature Research 16:1 (2025) 9500-9500
Abstract:
The rational design of perovskite heterojunctions is crucial for advancing the efficiency and operational stability of perovskite solar cells (PSCs). However, conventional methods face challenges in precisely controlling interfacial phase purity at the nanoscale and achieving conformal heterojunction coverage. Herein, we report a 'soft-soft' interaction-guided strategy to tailor perovskite heterojunction formation by introducing dimethyl sulfide (DMS) as a soft Lewis base additive in the organic cation solution. The resulting DMS-modulated PSCs achieve a remarkable power conversion efficiency (PCE) of up to 26.70%, with a certified PCE of 26.48%. The devices exhibit exceptional operational stability, retaining over 94% of their initial PCE after 2000 h of maximum power point tracking under continuous 1-sun illumination (ISOS-L-1 protocol). Furthermore, the universality of this 'soft-soft' interaction strategy is validated across a range of diverse perovskite compositions and ligand systems, demonstrating its potential for scalable and reproducible PSC fabrication.Optoelectronic polymer memristors with dynamic control for power-efficient in-sensor edge computing
Light: Science & Applications Springer Nature [academic journals on nature.com] 14:1 (2025) 309