Thermally stable passivation toward high efficiency inverted perovskite solar cells
ACS Energy Letters American Chemical Society 5:11 (2020) 3336-3343
Abstract:
Although metal halide perovskite photovoltaics have shown an unprecedented rise in power conversion efficiency (PCE), they remain far from their theoretical PCE limit. Among the highest efficiencies to date are delivered when polycrystalline films are enhanced via “molecular passivation”, but this can introduce new instabilities, in particular under severe accelerated aging conditions (e.g., at 85 °C in the dark or under full spectrum simulated sunlight). Here, we utilize a benzylammonium bromide passivation treatment to improve device performance, achieving the champion stabilized power output (SPO) of 19.5 % in a p-i-n device architecture. We correlate the improved device performance with a significant increase in charge carrier diffusion lengths, mobilities, and lifetimes. Furthermore, treated devices maintain an increased performance during 120 h combined stressing under simulated full spectrum sunlight at 85 °C, indicating that enhancement from this passivation treatment is sustained under harsh accelerated aging conditions. This is a crucial step toward real-world operation-relevant passivation treatments.Strong performance enhancement in lead-halide perovskite solar cells through rapid, atmospheric deposition of n-type buffer layer oxides
Nano Energy Elsevier 75 (2020) 104946
A piperidinium salt stabilizes efficient metal-halide perovskite solar cells
Science American Association for the Advancement of Science 369:6499 (2020) 96-102
Abstract:
Longevity has been a long-standing concern for hybrid perovskite photovoltaics. We demonstrate high-resilience positive-intrinsic-negative perovskite solar cells by incorporating a piperidiniumbased ionic-compound into the formamidinium-cesium lead-trihalide perovskite absorber. With the band gap tuned to be well suited for perovskite-on-silicon tandem cells, this piperidinium additive enhances the open-circuit voltage and cell efficiency. This additive also retards compositional segregation into impurity phases and pinhole formation in the perovskite absorber layer during aggressive aging. Under full-spectrum simulated sunlight in ambient atmosphere, our Confidential unencapsulated and encapsulated cells retain 80% and 95% of their peak and “post-burn-in” efficiencies for 1010 and 1200 hours at 60 and 85 degree Celsius, respectively. Our analysis reveals detailed degradation routes that contribute to the failure of aged cells.A piperidinium salt stabilizes efficient metal-halide perovskite solar cells.
Science (New York, N.Y.) Nature Research 369:6499 (2020) 96-102
Abstract:
Longevity has been a long-standing concern for hybrid perovskite photovoltaics. We demonstrate high-resilience positive-intrinsic-negative perovskite solar cells by incorporating a piperidinium-based ionic compound into the formamidinium-cesium lead-trihalide perovskite absorber. With the bandgap tuned to be well suited for perovskite-on-silicon tandem cells, this piperidinium additive enhances the open-circuit voltage and cell efficiency. This additive also retards compositional segregation into impurity phases and pinhole formation in the perovskite absorber layer during aggressive aging. Under full-spectrum simulated sunlight in ambient atmosphere, our unencapsulated and encapsulated cells retain 80 and 95% of their peak and post-burn-in efficiencies for 1010 and 1200 hours at 60° and 85°C, respectively. Our analysis reveals detailed degradation routes that contribute to the failure of aged cells.Publisher Correction: Deciphering photocarrier dynamics for tuneable high-performance perovskite-organic semiconductor heterojunction phototransistors.
Nature communications 11:1 (2020) 2956