Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Yen-Hung Lin

Long Term Visitor

Sub department

  • Condensed Matter Physics
yen-hung.lin@physics.ox.ac.uk
Telephone: 01865 (2)82328
Robert Hooke Building, room G26
  • About
  • Publications

Development and verification of interfacial fracture energy simulation methodology for porous stacked thin films

Engineering Fracture Mechanics Elsevier 296 (2024) 109851

Authors:

Chang-Chun Lee, Ruei-Ci Shih, Yen-Hung Lin
More details from the publisher
More details

Non-invasive, ultrasensitive detection of glucose in saliva using metal oxide transistors.

Biosensors & bioelectronics 237 (2023) 115448

Authors:

Abhinav Sharma, Wejdan S AlGhamdi, Hendrik Faber, Yen-Hung Lin, Chien-Hao Liu, En-Kai Hsu, Wei-Zhi Lin, Dipti Naphade, Suman Mandal, Martin Heeney, Thomas D Anthopoulos

Abstract:

Transistor-based biosensors represent an emerging technology for inexpensive point-of-care testing (POCT) applications. However, the limited sensitivity of the current transistor technologies hinders their practical deployment. In this study, we developed tri-channel In2O3/ZnO heterojunction thin-film transistors (TFTs) featuring the surface-immobilized enzyme glucose oxidase to detect glucose in various biofluids. This unusual channel design facilitates strong coupling between the electrons transported along the buried In2O3/ZnO heterointerface and the electrostatic perturbations caused by the interactions between glucose and surface-immobilized glucose oxidase. The enzyme selectively binds to glucose, causing a change in charge density on the channel surface. By exploring this effect, the solid-state biosensing TFT (BioTFT) can selectively detect glucose in artificial and real saliva over a wide range of concentrations from 500 nM to 20 mM with limits of detection of ∼365 pM (artificial saliva) and ∼416 nM (real saliva) in less than 60 s. The specificity of the sensor towards glucose has been demonstrated against various interfering species in artificial saliva, further highlighting its unique capabilities. Moreover, the BioTFTs exhibited good operating stability upon storage for up to two weeks, with relative standard deviation (RSD) values ranging from 2.36% to 6.39% for 500 nM glucose concentration. Our BioTFTs are easy to manufacture with reliable operation, making them ideal for non-invasive POCT applications.
More details from the publisher
More details
More details

Chloride-based additive engineering for efficient and stable wide-bandgap perovskite solar cells

Advanced Materials Wiley 35:30 (2023) e2211742

Authors:

Xinyi Shen, Benjamin M Gallant, Philippe Holzhey, Joel A Smith, Karim A Elmestekawy, Zhongcheng Yuan, Pvgm Rathnayake, Stefano Bernardi, Akash Dasgupta, Ernestas Kasparavicius, Tadas Malinauskas, Pietro Caprioglio, Oleksandra Shargaieva, Yen-Hung Lin, Melissa M McCarthy, Eva Unger, Vytautas Getautis, Asaph Widmer-Cooper, Laura M Herz, Henry J Snaith

Abstract:

Metal halide perovskite based tandem solar cells are promising to achieve power conversion efficiency beyond the theoretical limit of their single-junction counterparts. However, overcoming the significant open-circuit voltage deficit present in wide-bandgap perovskite solar cells remains a major hurdle for realizing efficient and stable perovskite tandem cells. Here, a holistic approach to overcoming challenges in 1.8 eV perovskite solar cells is reported by engineering the perovskite crystallization pathway by means of chloride additives. In conjunction with employing a self-assembled monolayer as the hole-transport layer, an open-circuit voltage of 1.25 V and a power conversion efficiency of 17.0% are achieved. The key role of methylammonium chloride addition is elucidated in facilitating the growth of a chloride-rich intermediate phase that directs crystallization of the desired cubic perovskite phase and induces more effective halide homogenization. The as-formed 1.8 eV perovskite demonstrates suppressed halide segregation and improved optoelectronic properties.
More details from the publisher
Details from ORA
More details
More details

Polymeric Memristor Based Artificial Synapses with Ultra-Wide Operating Temperature.

Advanced materials (Deerfield Beach, Fla.) 35:23 (2023) e2209728

Authors:

Jiayu Li, Yangzhou Qian, Wen Li, Songcheng Yu, Yunxin Ke, Haowen Qian, Yen-Hung Lin, Cheng-Hung Hou, Jing-Jong Shyue, Jia Zhou, Ye Chen, Jiangping Xu, Jintao Zhu, Mingdong Yi, Wei Huang

Abstract:

Neuromorphic electronics, being inspired by how the brain works, hold great promise to the successful implementation of smart artificial systems. Among several neuromorphic hardware issues, a robust device functionality under extreme temperature is of particular importance for practical applications. Given that the organic memristors for artificial synapse applications are demonstrated under room temperature, achieving a robust device performance at extremely low or high temperature is still utterly challenging. In this work, the temperature issue is addressed by tuning the functionality of the solution-based organic polymeric memristor. The optimized memristor demonstrates a reliable performance under both the cryogenic and high-temperature environments. The unencapsulated organic polymeric memristor shows a robust memristive response under test temperature ranging from 77 to 573 K. Utilizing X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary-ion mass spectrometry (ToF-SIMS) depth profiling, the device working mechanism is unveiled by comparing the compositional profiles of the fresh and written organic polymeric memristors. A reversible ion migration induced by an applied voltage contributes to the characteristic switching behavior of the memristor. Herein, both the robust memristive response achieved at extreme temperatures and the verified device working mechanism will remarkably accelerate the development of memristors in neuromorphic systems.
More details from the publisher
More details
More details

Understanding the Degradation of Methylenediammonium and Its Role in Phase-Stabilizing Formamidinium Lead Triiodide.

Journal of the American Chemical Society American Chemical Society (ACS) 145:18 (2023) 10275-10284

Authors:

Elisabeth A Duijnstee, Benjamin M Gallant, Philippe Holzhey, Dominik J Kubicki, Silvia Collavini, Bernd K Sturdza, Harry C Sansom, Joel Smith, Matthias J Gutmann, Santanu Saha, Murali Gedda, Mohamad I Nugraha, Manuel Kober-Czerny, Chelsea Xia, Adam D Wright, Yen-Hung Lin, Alexandra J Ramadan, Andrew Matzen, Esther Y-H Hung, Seongrok Seo, Suer Zhou, Jongchul Lim, Thomas D Anthopoulos, Marina R Filip, Michael B Johnston

Abstract:

Formamidinium lead triiodide (FAPbI<sub>3</sub>) is the leading candidate for single-junction metal-halide perovskite photovoltaics, despite the metastability of this phase. To enhance its ambient-phase stability and produce world-record photovoltaic efficiencies, methylenediammonium dichloride (MDACl<sub>2</sub>) has been used as an additive in FAPbI<sub>3</sub>. MDA<sup>2+</sup> has been reported as incorporated into the perovskite lattice alongside Cl<sup>-</sup>. However, the precise function and role of MDA<sup>2+</sup> remain uncertain. Here, we grow FAPbI<sub>3</sub> single crystals from a solution containing MDACl<sub>2</sub> (FAPbI<sub>3</sub>-M). We demonstrate that FAPbI<sub>3</sub>-M crystals are stable against transformation to the photoinactive δ-phase for more than one year under ambient conditions. Critically, we reveal that MDA<sup>2+</sup> is not the direct cause of the enhanced material stability. Instead, MDA<sup>2+</sup> degrades rapidly to produce ammonium and methaniminium, which subsequently oligomerizes to yield hexamethylenetetramine (HMTA). FAPbI<sub>3</sub> crystals grown from a solution containing HMTA (FAPbI<sub>3</sub>-H) replicate the enhanced α-phase stability of FAPbI<sub>3</sub>-M. However, we further determine that HMTA is unstable in the perovskite precursor solution, where reaction with FA<sup>+</sup> is possible, leading instead to the formation of tetrahydrotriazinium (THTZ-H<sup>+</sup>). By a combination of liquid- and solid-state NMR techniques, we show that THTZ-H<sup>+</sup> is selectively incorporated into the bulk of both FAPbI<sub>3</sub>-M and FAPbI<sub>3</sub>-H at ∼0.5 mol % and infer that this addition is responsible for the improved α-phase stability.
More details from the publisher
More details
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet