A tri-channel oxide transistor concept for the rapid detection of biomolecules including the SARS-CoV-2 spike protein
Advanced Materials Wiley 34:3 (2021) 2104608
Abstract:
Solid-state transistor sensors that can detect biomolecules in real time are highly attractive for emerging bioanalytical applications. However, combining upscalable manufacturing with the required performance remains challenging. Here we develop an alternative biosensor transistor concept that relies on a solution-processed In2 O3 /ZnO semiconducting heterojunction featuring a geometrically engineered tri-channel architecture for the rapid, real-time detection of important biomolecules. The sensor combines a high electron mobility channel, attributed to the electronic properties of the In2 O3 /ZnO heterointerface, in close proximity to a sensing surface featuring tethered analyte receptors. The unusual tri-channel design enables strong coupling between the buried electron channel and electrostatic perturbations occurring during receptor-analyte interactions allowing for robust, real-time detection of biomolecules down to attomolar (aM) concentrations. The experimental findings are corroborated by extensive device simulations, highlighting the unique advantages of the heterojunction tri-channel design. By functionalizing the surface of the geometrically-engineered channel with SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) antibody receptors, we demonstrate real-time detection of the SARS-CoV-2 spike S1 protein down to aM concentrations in under two minutes in physiological relevant conditions. This article is protected by copyright. All rights reserved.Therapeutic Efficacy of Sesquiterpene Farnesol in Treatment of Cutibacterium acnes-Induced Dermal Disorders
Molecules MDPI 26:18 (2021) 5723
Adduct-based p-doping of organic semiconductors
Nature Materials Nature Research 20 (2021) 1248-1254
Abstract:
Electronic doping of organic semiconductors is essential for their usage in highly efficient optoelectronic devices. Although molecular and metal complex-based dopants have already enabled significant progress of devices based on organic semiconductors, there remains a need for clean, efficient and low-cost dopants if a widespread transition towards larger-area organic electronic devices is to occur. Here we report dimethyl sulfoxide adducts as p-dopants that fulfil these conditions for a range of organic semiconductors. These adduct-based dopants are compatible with both solution and vapour-phase processing. We explore the doping mechanism and use the knowledge we gain to 'decouple' the dopants from the choice of counterion. We demonstrate that asymmetric p-doping is possible using solution processing routes, and demonstrate its use in metal halide perovskite solar cells, organic thin-film transistors and organic light-emitting diodes, which showcases the versatility of this doping approach.Ligand-engineered bandgap stability in mixed-halide perovskite LEDs
Nature Springer Nature 591:7848 (2021) 72-77
Abstract:
Lead halide perovskites are promising semiconductors for light-emitting applications because they exhibit bright, bandgap-tunable luminescence with high colour purity1,2. Photoluminescence quantum yields close to unity have been achieved for perovskite nanocrystals across a broad range of emission colours, and light-emitting diodes with external quantum efficiencies exceeding 20 per cent—approaching those of commercial organic light-emitting diodes—have been demonstrated in both the infrared and the green emission channels1,3,4. However, owing to the formation of lower-bandgap iodide-rich domains, efficient and colour-stable red electroluminescence from mixed-halide perovskites has not yet been realized5,6. Here we report the treatment of mixed-halide perovskite nanocrystals with multidentate ligands to suppress halide segregation under electroluminescent operation. We demonstrate colour-stable, red emission centred at 620 nanometres, with an electroluminescence external quantum efficiency of 20.3 per cent. We show that a key function of the ligand treatment is to ‘clean’ the nanocrystal surface through the removal of lead atoms. Density functional theory calculations reveal that the binding between the ligands and the nanocrystal surface suppresses the formation of iodine Frenkel defects, which in turn inhibits halide segregation. Our work exemplifies how the functionality of metal halide perovskites is extremely sensitive to the nature of the (nano)crystalline surface and presents a route through which to control the formation and migration of surface defects. This is critical to achieve bandgap stability for light emission and could also have a broader impact on other optoelectronic applications—such as photovoltaics—for which bandgap stability is required.A Monochloro Copper Phthalocyanine Memristor with High‐Temperature Resilience for Electronic Synapse Applications
Advanced Materials Wiley 33:5 (2021) e2006201