Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Yen-Hung Lin

Long Term Visitor

Sub department

  • Condensed Matter Physics
yen-hung.lin@physics.ox.ac.uk
Telephone: 01865 (2)82328
Robert Hooke Building, room G26
  • About
  • Publications

Open-circuit and short-circuit loss management in wide-gap perovskite p-i-n solar cells

Nature communications Springer Nature 14:1 (2023) 932

Authors:

Pietro Caprioglio, Joel A Smith, Robert DJ Oliver, Akash Dasgupta, Saqlain Choudhary, Michael D Farrar, Alexandra J Ramadan, Yen-Hung Lin, M Greyson Christoforo, James M Ball, Jonas Diekmann, Jarla Thiesbrummel, Karl-Augustin Zaininger, Xinyi Shen, Michael B Johnston, Dieter Neher, Martin Stolterfoht, Henry J Snaith

Abstract:

In this work, we couple theoretical and experimental approaches to understand and reduce the losses of wide bandgap Br-rich perovskite pin devices at open-circuit voltage (VOC) and short-circuit current (JSC) conditions. A mismatch between the internal quasi-Fermi level splitting (QFLS) and the external VOC is detrimental for these devices. We demonstrate that modifying the perovskite top-surface with guanidinium-Br and imidazolium-Br forms a low-dimensional perovskite phase at the n-interface, suppressing the QFLS-VOC mismatch, and boosting the VOC. Concurrently, the use of an ionic interlayer or a self-assembled monolayer at the p-interface reduces the inferred field screening induced by mobile ions at JSC, promoting charge extraction and raising the JSC. The combination of the n- and p-type optimizations allows us to approach the thermodynamic potential of the perovskite absorber layer, resulting in 1 cm2 devices with performance parameters of VOCs up to 1.29 V, fill factors above 80% and JSCs up to 17 mA/cm2, in addition to a thermal stability T80 lifetime of more than 3500 h at 85 °C.

More details from the publisher
Details from ORA
More details
More details

Impact of layer thickness on the operating characteristics of In2O3/ZnO heterojunction thin-film transistors

Applied Physics Letters AIP Publishing 121:23 (2022) 233503

Authors:

Wejdan S AlGhamdi, Aiman Fakieh, Hendrik Faber, Yen-Hung Lin, Wei-Zhi Lin, Po-Yu Lu, Chien-Hao Liu, Khaled Nabil Salama, Thomas D Anthopoulos
More details from the publisher
More details

Humidity‐Enabled Organic Artificial Synaptic Devices with Ultrahigh Moisture Resistivity

Advanced Electronic Materials Wiley 8:10 (2022)

Authors:

Jiayu Li, Yangzhou Qian, Wen Li, Yen‐Hung Lin, Haowen Qian, Tao Zhang, Ke Sun, Jin Wang, Jia Zhou, Ye Chen, Jintao Zhu, Guangwei Zhang, Mingdong Yi, Wei Huang
More details from the publisher
More details

Long-range charge carrier mobility in metal halide perovskite thin-films and single crystals via transient photo-conductivity

Nature Communications Springer Nature 13:1 (2022) 4201

Authors:

Jongchul Lim, Manuel Kober-Czerny, Yen-Hung Lin, James M Ball, Nobuya Sakai, Elisabeth A Duijnstee, Min Ji Hong, John G Labram, Bernard Wenger, Henry J Snaith

Abstract:

Charge carrier mobility is a fundamental property of semiconductor materials that governs many electronic device characteristics. For metal halide perovskites, a wide range of charge carrier mobilities have been reported using different techniques. Mobilities are often estimated via transient methods assuming an initial charge carrier population after pulsed photoexcitation and measurement of photoconductivity via non-contact or contact techniques. For nanosecond to millisecond transient methods, early-time recombination and exciton-to-free-carrier ratio hinder accurate determination of free-carrier population after photoexcitation. By considering both effects, we estimate long-range charge carrier mobilities over a wide range of photoexcitation densities via transient photoconductivity measurements. We determine long-range mobilities for FA0.83Cs0.17Pb(I0.9Br0.1)3, (FA0.83MA0.17)0.95Cs0.05Pb(I0.9Br0.1)3 and CH3NH3PbI3-xClx polycrystalline films in the range of 0.3 to 6.7 cm2 V−1 s−1. We demonstrate how our data-processing technique can also reveal more precise mobility estimates from non-contact time-resolved microwave conductivity measurements. Importantly, our results indicate that the processing of polycrystalline films significantly affects their long-range mobility.
More details from the publisher
Details from ORA
More details
More details

Visualizing macroscopic inhomogeneities in perovskite solar cells

ACS Energy Letters American Chemical Society 7:7 (2022) 2311-2322

Authors:

Akash Dasgupta, Suhas Mahesh, Pietro Caprioglio, Yen-Hung Lin, Karl-Augustin Zaininger, Robert DJ Oliver, Philippe Holzhey, Suer Zhou, Melissa M McCarthy, Joel A Smith, Maximilian Frenzel, M Greyson Christoforo, James M Ball, Bernard Wenger, Henry J Snaith

Abstract:

Despite the incredible progress made, the highest efficiency perovskite solar cells are still restricted to small areas (<1 cm2). In large part, this stems from a poor understanding of the widespread spatial heterogeneity in devices. Conventional techniques to assess heterogeneities can be time consuming, operate only at microscopic length scales, and demand specialized equipment. We overcome these limitations by using luminescence imaging to reveal large, millimeter-scale heterogeneities in the inferred electronic properties. We determine spatially resolved maps of “charge collection quality”, measured using the ratio of photoluminescence intensity at open and short circuit. We apply these methods to quantify the inhomogeneities introduced by a wide range of transport layers, thereby ranking them by suitability for upscaling. We reveal that top-contacting transport layers are the dominant source of heterogeneity in the multilayer material stack. We suggest that this methodology can be used to accelerate the development of highly efficient, large-area modules, especially through high-throughput experimentation.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet