Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Yen-Hung Lin

Long Term Visitor

Sub department

  • Condensed Matter Physics
yen-hung.lin@physics.ox.ac.uk
Telephone: 01865 (2)82328
Robert Hooke Building, room G26
  • About
  • Publications

Visualizing macroscopic inhomogeneities in perovskite solar cells

University of Oxford (2022)

Authors:

Akash Dasgupta, Suhas Mahesh, Pietro Caprioglio, Yen-Hung Lin, Karl-Augustin Zaininger, Robert DJ Oliver, Philippe Holzhey, Suer Zhou, Melissa McCarthy, Joel Smith, Maximilian Frenzel, M Greyson Christoforo, James Ball, Bernard Wenger, Henry J Snaith

Abstract:

This contains all data used in the paper: ACS Energy Lett. 2022, 7, 7, 2311–2322, DOI: https://doi.org/10.1021/acsenergylett.2c01094. Data has been sorted into raw and processed, and organised by which figure they appear in. Arrays require Python and the numpy package to load (np.load('filename.npy')). All other data is in text format of some form, easily openable. Some plots require Origin labs to open, but no data in these files are inaccessible from the txt files/ csvs etc.
More details from the publisher
Details from ORA

Understanding and suppressing non-radiative losses in methylammonium-free wide-bandgap perovskite solar cells

Energy and Environmental Science Royal Society of Chemistry 15 (2021) 714-726

Authors:

Robert DJ Oliver, Pietro Caprioglio, Francisco Peña-Camargo, Leonardo Buizza, Fengshuo Zu, Alexandra J Ramadan, Silvia Motti, Suhas Mahesh, Melissa McCarthy, Jonathan H Warby, Yen-Hung Lin, Norbert Koch, Steve Albrecht, Laura M Herz, Michael B Johnston, Dieter Neher, Martin Stolterfoht, Henry Snaith

Abstract:

With power conversion efficiencies of perovskite-on-silicon and all-perovskite tandem solar cells increasing at rapid pace, wide bandgap (> 1.7 eV) metal-halide perovskites (MHPs) are becoming a major focus of academic and industrial photovoltaic research. Compared to their lower bandgap (< 1.6 eV) counterparts, these types of perovskites suffer from higher levels of non-radiative losses in both the bulk material and in device configurations, constraining their efficiencies far below their thermodynamic potential. In this work, we investigate the energy losses in methylammonium (MA) free high-Br-content widegap perovskites by using a combination of THz spectroscopy, steady-state and time-resolved photoluminescence, coupled with drift-diffusion simulations. The investigation of this system allows us to study charge-carrier recombination in these materials and devices in the absence of halide segregation due to the photostabilty of formamidinium-cesium based lead halide perovskites. We find that these perovskites are characterised by large non-radiative recombination losses in the bulk material and that the interfaces with transport layers in solar cell devices strongly limit their open-circuit voltage. In particular, we discover that the interface with the hole transport layer performs particularly poorly, in contrast to 1.6 eV bandgap MHPs which are generally limited by the interface with the electron-transport layer. To overcome these losses, we incorporate and investigate the recombination mechanisms present with perovskites treated with the ionic additive 1-butyl-1-methylpipiderinium tetrafluoroborate. We find that this additive not only improves the radiative efficiency of the bulk perovskite, but also reduces the non-radiative recombination at both the hole and electron transport layer interfaces of full photovoltaic devices. In addition to unravelling the beneficial effect of this specific treatment, we further optimise our solar cells by introducing an additional LiF interface treatment at the electron transport layer interface. Together these treatments enable MA-free 1.79 eV bandgap perovskite solar cells with open-circuit voltages of 1.22 V and power conversion efficiencies approaching 17 %, which is among the highest reported for this material system.
More details from the publisher
Details from ORA
More details

A tri-channel oxide transistor concept for the rapid detection of biomolecules including the SARS-CoV-2 spike protein

Advanced Materials Wiley 34:3 (2021) 2104608

Authors:

Yen-Hung Lin, Yang Han, Abhinav Sharma, Wejdan S AlGhamdi, Chien-Hao Liu, Tzu-Hsuan Chang, Xi-Wen Xiao, Wei-Zhi Lin, Po-Yu Lu, Akmaral Seitkhan, Alexander D Mottram, Pichaya Pattanasattayavong, Hendrik Faber, Martin Heeney, Thomas D Anthopoulos

Abstract:

Solid-state transistor sensors that can detect biomolecules in real time are highly attractive for emerging bioanalytical applications. However, combining upscalable manufacturing with the required performance remains challenging. Here we develop an alternative biosensor transistor concept that relies on a solution-processed In2 O3 /ZnO semiconducting heterojunction featuring a geometrically engineered tri-channel architecture for the rapid, real-time detection of important biomolecules. The sensor combines a high electron mobility channel, attributed to the electronic properties of the In2 O3 /ZnO heterointerface, in close proximity to a sensing surface featuring tethered analyte receptors. The unusual tri-channel design enables strong coupling between the buried electron channel and electrostatic perturbations occurring during receptor-analyte interactions allowing for robust, real-time detection of biomolecules down to attomolar (aM) concentrations. The experimental findings are corroborated by extensive device simulations, highlighting the unique advantages of the heterojunction tri-channel design. By functionalizing the surface of the geometrically-engineered channel with SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) antibody receptors, we demonstrate real-time detection of the SARS-CoV-2 spike S1 protein down to aM concentrations in under two minutes in physiological relevant conditions. This article is protected by copyright. All rights reserved.
More details from the publisher
Details from ORA
More details
More details

Therapeutic Efficacy of Sesquiterpene Farnesol in Treatment of Cutibacterium acnes-Induced Dermal Disorders

Molecules MDPI 26:18 (2021) 5723

Authors:

Guan-Xuan Wu, Yu-Wen Wang, Chun-Shien Wu, Yen-Hung Lin, Chih-Hsin Hung, Han-Hsiang Huang, Shyh-Ming Kuo
More details from the publisher
More details
More details

Adduct-based p-doping of organic semiconductors

Nature Materials Nature Research 20 (2021) 1248-1254

Authors:

Nobuya Sakai, Ross Warren, Fengyu Zhang, Simantini Nayak, Junliang Liu, Sameer V Kesava, Yen-Hung Lin, Himansu S Biswal, Xin Lin, Chris Grovenor, Tadas Malinauskas, Aniruddha Basu, Thomas D Anthopoulos, Vytautas Getautis, Antoine Kahn, Moritz Riede, Pabitra K Nayak, Henry J Snaith

Abstract:

Electronic doping of organic semiconductors is essential for their usage in highly efficient optoelectronic devices. Although molecular and metal complex-based dopants have already enabled significant progress of devices based on organic semiconductors, there remains a need for clean, efficient and low-cost dopants if a widespread transition towards larger-area organic electronic devices is to occur. Here we report dimethyl sulfoxide adducts as p-dopants that fulfil these conditions for a range of organic semiconductors. These adduct-based dopants are compatible with both solution and vapour-phase processing. We explore the doping mechanism and use the knowledge we gain to 'decouple' the dopants from the choice of counterion. We demonstrate that asymmetric p-doping is possible using solution processing routes, and demonstrate its use in metal halide perovskite solar cells, organic thin-film transistors and organic light-emitting diodes, which showcases the versatility of this doping approach.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Current page 7
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet