Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

John March-Russell

Professor of Theoretical Physics and Senior Research Fellow, New College, Oxford; Perimeter Institute Distinguished Visiting Research Chair

Research theme

  • Particle astrophysics & cosmology
  • Fundamental particles and interactions
  • Fields, strings, and quantum dynamics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
  • AION/Magis
John.March-Russell@physics.ox.ac.uk
Telephone: 01865 (2)73630
Rudolf Peierls Centre for Theoretical Physics, room 60.05
  • About
  • Publications

The Ubiquitous Throat

ArXiv hep-th/0607120 (2006)

Authors:

A Hebecker, J March-Russell

Abstract:

We attempt to quantify the widely-held belief that large hierarchies induced by strongly-warped geometries are common in the string theory landscape. To this end, we focus on the arguably best-understood subset of vacua -- type IIB Calabi-Yau orientifolds with non-perturbative Kaehler stabilization and a SUSY-breaking uplift (the KKLT setup). Within this framework, vacua with a realistically small cosmological constant are expected to come from Calabi-Yaus with a large number of 3-cycles. For appropriate choices of flux numbers, many of these 3-cycles can, in general, shrink to produce near-conifold geometries. Thus, a simple statistical analysis in the spirit of Denef and Douglas allows us to estimate the expected number and length of Klebanov-Strassler throats in the given set of vacua. We find that throats capable of explaining the electroweak hierarchy are expected to be present in a large fraction of the landscape vacua while shorter throats are essentially unavoidable in a statistical sense.
Details from ArXiV
More details from the publisher

The Ubiquitous Throat

(2006)

Authors:

A Hebecker, J March-Russell
More details from the publisher

ΔI=1/2 rule in holographic QCD

Physical Review D - Particles, Fields, Gravitation and Cosmology 74:2 (2006)

Authors:

T Hambye, B Hassanain, J March-Russell, M Schvellinger

Abstract:

We study the ΔI=1/2 rule for kaon decays and the BK parameter for K0-K̄0 mixing in a dual 5-dimensional holographic QCD model. We perform, in the chiral limit, computations of the relevant four-point current-current correlators, which depend upon self-interactions among the 5D bulk fields. Spontaneous chiral symmetry breaking (χSB) is realized through boundary conditions on the bulk fields. Numerical results are analyzed in comparison with QCD, chiral perturbation theory (χPT) and data, finding reasonable agreement with the experimental values of the g8 and g27 parameters describing the ΔI=1/2, 3/2 decay channels. © 2006 The American Physical Society.
More details from the publisher

Signals of inflation in a friendly string landscape

Journal of High Energy Physics 2006:7 (2006)

Authors:

J March-Russell, F Riva

Abstract:

Following Freivogel et al we consider inflation in a predictive (or 'friendly') region of the landscape of string vacua, as modeled by Arkani-Hamed, Dimopoulos and Kachru. In such a region the dimensionful coefficients of super-renormalizable operators unprotected by symmetries, such as the vacuum energy and scalar mass-squareds are freely scanned over, and the objects of study are anthropically or 'environmentally' conditioned probability distributions for observables. In this context we study the statistical predictions of (inverted) hybrid inflation models, where the properties of the inflaton are probabilistically distributed. We derive the resulting distributions of observables, including the deviation from flatness |1-Ω|, the spectral index of scalar cosmological perturbations ns (and its scale dependence dns/dlog k), and the ratio of tensor to scalar perturbations r. The environmental bound on the curvature implies a solution to the η-problem of inflation with the predicted distribution of (1-n s) indicating values close to current observations. We find a relatively low probability (< 3%) of 'just-so' inflation with measurable deviations from flatness. Intermediate scales of inflation are preferred in these models. © SISSA 2006.
More details from the publisher

Signals of Inflation in a Friendly String Landscape

ArXiv astro-ph/0604254 (2006)

Authors:

John March-Russell, Francesco Riva

Abstract:

Following Freivogel {\it et al} we consider inflation in a predictive (or `friendly') region of the landscape of string vacua, as modeled by Arkani-Hamed, Dimopoulos and Kachru. In such a region the dimensionful coefficients of super-renormalizable operators unprotected by symmetries, such as the vacuum energy and scalar mass-squareds are freely scanned over, and the objects of study are anthropically or `environmentally' conditioned probability distributions for observables. In this context we study the statistical predictions of (inverted) hybrid inflation models, where the properties of the inflaton are probabilistically distributed. We derive the resulting distributions of observables, including the deviation from flatness $|1-\Omega|$, the spectral index of scalar cosmological perturbations $n_s$ (and its scale dependence $dn_s/d\log k$), and the ratio of tensor to scalar perturbations $r$. The environmental bound on the curvature implies a solution to the $\eta$-problem of inflation with the predicted distribution of $(1-n_s)$ indicating values close to current observations. We find a relatively low probability ($<3%$) of `just-so' inflation with measurable deviations from flatness. Intermediate scales of inflation are preferred in these models.
Details from ArXiV
More details
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 19
  • Page 20
  • Page 21
  • Page 22
  • Current page 23
  • Page 24
  • Page 25
  • Page 26
  • Page 27
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet