Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
DNA tetrahedron

Professor Andrew Turberfield

Professor of Biological Physics

Research theme

  • Biological physics

Sub department

  • Condensed Matter Physics

Research groups

  • Nucleic acid nanotechnology
Andrew.Turberfield@physics.ox.ac.uk
  • About
  • Publications

Reconfigurable T‐junction DNA origami

Angewandte Chemie International Edition Wiley 59:37 (2020) 15942-15946

Authors:

Katherine Young, Behnam Najafi, William Sant, Sonia Contera, Ard Louis, Jonathan Doye, Andrew Turberfield, Jonathan Bath

Abstract:

DNA self‐assembly allows the construction of nanometre‐scale structures and devices. Structures with thousands of unique components are routinely assembled in good yield. Experimental progress has been rapid, based largely on empirical design rules. Here we demonstrate a DNA origami technique designed as a model system with which to explore the mechanism of assembly. The origami fold is controlled through single‐stranded loops embedded in a double‐stranded DNA template and is programmed by a set of double‐stranded linkers that specify pairwise interactions between loop sequences. Assembly is via T‐junctions formed by hybridization of single‐stranded overhangs on the linkers with the loops. The sequence of loops on the template and the set of interaction rules embodied in the linkers can be reconfigured with ease. We show that a set of just two interaction rules can be used to assemble simple T‐junction origami motifs and that assembly can be performed at room temperature.
More details from the publisher
Details from ORA
More details

Chiral DNA Origami Nanotubes with Well‐Defined and Addressable Inside and Outside Surfaces

Angewandte Chemie Wiley 130:26 (2018) 7813-7816

Authors:

Florence Benn, Natalie EC Haley, Alexandra E Lucas, Emma Silvester, Seham Helmi, Robert Schreiber, Jonathan Bath, Andrew J Turberfield
More details from the publisher

Dimensions and Global Twist of Single-Layer DNA Origami Measured by Small-Angle X-Ray Scattering.

ACS nano (2018)

Authors:

Matthew AB Baker, Andrew J Tuckwell, Jonathan F Berengut, Jonathan Bath, Florence Benn, Anthony P Duff, Andrew E Whitten, Katherine E Dunn, Robert M Hynson, Andrew J Turberfield, Lawrence K Lee

Abstract:

The rational design of complementary DNA sequences can be used to create nanostructures that self-assemble with nanometer precision. DNA nanostructures have been imaged by atomic force microscopy and electron microscopy. Small-angle X-ray scattering (SAXS) provides complementary structural information on the ensemble-averaged state of DNA nanostructures in solution. Here we demonstrate that SAXS can distinguish between different single-layer DNA origami tiles that look identical when immobilized on a mica surface and imaged with atomic force microscopy. We use SAXS to quantify the magnitude of global twist of DNA origami tiles with different crossover periodicities: these measurements highlight the extreme structural sensitivity of single-layer origami to the location of strand crossovers. We also use SAXS to quantify the distance between pairs of gold nanoparticles tethered to specific locations on a DNA origami tile and use this method to measure the overall dimensions and geometry of the DNA nanostructure in solution. Finally, we use indirect Fourier methods, which have long been used for the interpretation of SAXS data from biomolecules, to measure the distance between DNA helix pairs in a DNA origami nanotube. Together, these results provide important methodological advances in the use of SAXS to analyze DNA nanostructures in solution and insights into the structures of single-layer DNA origami.
More details from the publisher
Details from ORA
More details
More details

Chiral DNA origami nanotubes with well‐defined and addressable inside and outside surfaces

Angewandte Chemie International Edition Wiley‐VCH Verlag 57:26 (2018) 7687-7690

Authors:

F Benn, Natalie EC Haley, Alexandra E Lucas, Emma Silvester, Seham Helmi, R Schreiber, Jonathan Bath, Andrew J Turberfield

Abstract:

We report the design and assembly of chiral DNA nanotubes with well‐defined and addressable inside and outside surfaces. We demonstrate that the outside surface can be functionalised with a chiral arrangement of gold nanoparticles to create a plasmonic device and that the inside surface can be functionalised with a track for a molecular motor allowing transport of a cargo within the central cavity.
More details from the publisher
Details from ORA
More details
More details

Self-propulsion of catalytic nanomotors synthesised by seeded growth of asymmetric platinum–gold nanoparticles

Chemical Communications Royal Society of Chemistry 54:15 (2018) 1901-1904

Authors:

Ibon Santiago, Luyun Jiang, John Foord, Andrew Turberfield

Abstract:

Asymmetric bimetallic nanomotors are synthesised by seeded growth in solution, providing a convenient and high-throughput alternative to the usual top-down lithographic fabrication of self-propelled catalytic nanoparticles. These synthetic nanomotors catalyse H2O2 decomposition and exhibit enhanced diffusion that depends on fuel concentration, consistent with their chemical propulsion.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet