Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
A blackboard in my office

John Wheater

Professor of Physics, Head of Particle Theory Group

Research theme

  • Fundamental particles and interactions
  • Fields, strings, and quantum dynamics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
John.Wheater@physics.ox.ac.uk
Telephone: 01865 (2)73961
Rudolf Peierls Centre for Theoretical Physics, room 60.06
  • About
  • Research
  • Teaching
  • Publications

A restricted dimer model on a two-dimensional random causal triangulation

Journal of Physics A: Mathematical and Theoretical IOP Publishing 47:36 (2014) 365001-365001

Authors:

J Ambjørn, B Durhuus, John Wheater

Abstract:

We introduce a restricted hard dimer model on a random causal triangulation that is exactly solvable and generalizes a model recently proposed by Atkin and Zohren (2012 Phys. Lett. B 712 445–50). We show that the latter model exhibits unusual behaviour at its multicritical point; in particular, its Hausdorff dimension equals 3 and not $3/2$ as would be expected from general scaling arguments. When viewed as a special case of the generalized model introduced here we show that this behaviour is not generic and therefore is not likely to represent the true behaviour of the full dimer model on a random causal triangulation.
More details from the publisher
Details from ORA
More details
Details from ArXiV

A restricted dimer model on a 2-dimensional random causal triangulation

(2014)

Authors:

J Ambjorn, B Durhuus, JF Wheater
More details from the publisher

Aspects of dynamical dimensional reduction in multigraph ensembles of CDT

ArXiv 1209.4798 (2012)

Authors:

Georgios Giasemidis, John F Wheater, Stefan Zohren

Abstract:

We study the continuum limit of a "radially reduced" approximation of Causal Dynamical Triangulations (CDT), so-called multigraph ensembles, and explain why they serve as realistic toy models to study the dimensional reduction observed in numerical simulations of four-dimensional CDT. We present properties of this approximation in two, three and four dimensions comparing them with the numerical simulations and pointing out some common features with 2+1 dimensional Horava-Lifshitz gravity.
Details from ArXiV
More details from the publisher

Aspects of dynamical dimensional reduction in multigraph ensembles of CDT

(2012)

Authors:

Georgios Giasemidis, John F Wheater, Stefan Zohren
More details from the publisher

Spectral dimension flow on continuum random multigraph

ArXiv 1209.4786 (2012)

Authors:

Georgios Giasemidis, John F Wheater, Stefan Zohren

Abstract:

We review a recently introduced effective graph approximation of causal dynamical triangulations (CDT), the multigraph ensemble. We argue that it is well suited for analytical computations and that it captures the physical degrees of freedom which are important for the reduction of the spectral dimension as observed in numerical simulations of CDT. In addition multigraph models allow us to study the relationship between the spectral dimension and the Hausdorff dimension, thus establishing a link to other approaches to quantum gravity
Details from ArXiV
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet