Aspects of dynamical dimensional reduction in multigraph ensembles of CDT
(2012)
Spectral dimension flow on continuum random multigraph
ArXiv 1209.4786 (2012)
Abstract:
We review a recently introduced effective graph approximation of causal dynamical triangulations (CDT), the multigraph ensemble. We argue that it is well suited for analytical computations and that it captures the physical degrees of freedom which are important for the reduction of the spectral dimension as observed in numerical simulations of CDT. In addition multigraph models allow us to study the relationship between the spectral dimension and the Hausdorff dimension, thus establishing a link to other approaches to quantum gravityMultigraph models for causal quantum gravity and scale dependent spectral dimension
ArXiv 1202.6322 (2012)
Abstract:
We study random walks on ensembles of a specific class of random multigraphs which provide an "effective graph ensemble" for the causal dynamical triangulation (CDT) model of quantum gravity. In particular, we investigate the spectral dimension of the multigraph ensemble for recurrent as well as transient walks. We investigate the circumstances in which the spectral dimension and Hausdorff dimension are equal and show that this occurs when rho, the exponent for anomalous behaviour of the resistance to infinity, is zero. The concept of scale dependent spectral dimension in these models is introduced. We apply this notion to a multigraph ensemble with a measure induced by a size biased critical Galton-Watson process which has a scale dependent spectral dimension of two at large scales and one at small scales. We conclude by discussing a specific model related to four dimensional CDT which has a spectral dimension of four at large scales and two at small scales.Multigraph models for causal quantum gravity and scale dependent spectral dimension
(2012)