Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
A blackboard in my office

John Wheater

Professor of Physics, Head of Particle Theory Group

Research theme

  • Fundamental particles and interactions
  • Fields, strings, and quantum dynamics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
John.Wheater@physics.ox.ac.uk
Telephone: 01865 (2)73961
Rudolf Peierls Centre for Theoretical Physics, room 60.06
  • About
  • Research
  • Teaching
  • Publications

Continuum Random Combs and Scale Dependent Spectral Dimension

(2011)

Authors:

Max R Atkin, Georgios Giasemidis, John F Wheater
More details from the publisher

The Spectrum of FZZT Branes Beyond the Planar Limit

ArXiv 1011.5989 (2010)

Authors:

Max R Atkin, John F Wheater

Abstract:

Minimal string theory has a number of FZZT brane boundary states; one for each Cardy state of the minimal model. It was conjectured by Seiberg and Shih that all branes in a minimal string theory could be expressed as a linear combination of the brane associated to the identity operator of the minimal model with complex shifts in the boundary cosmological constant. Subsequently it was found that this identification of FZZT branes does not hold exactly for some cylinder amplitudes but was spoiled by terms that are associated with vanishing worldsheet area and are therefore non-universal. In this paper we investigate this claim systematically, using both Liouville and matrix model methods, beyond the planar limit. We find that the aforementioned identification of FZZT branes is spoiled by terms that do not admit an interpretation as non-universal terms. Furthermore, the spoiling terms as computed using the matrix model are found to be in agreement with those coming from Liouville theory, which also suggests that these terms have universal meaning. Finally, we also investigate the identification of FZZT branes by replacing the boundary state with a sum of local operators. We find in this case that the brane associated with the identity operator appears to be special as it is the only one to correctly reproduce the correlation numbers for bulk operators on the torus.
Details from ArXiV
More details from the publisher

The Spectrum of FZZT Branes Beyond the Planar Limit

(2010)

Authors:

Max R Atkin, John F Wheater
More details from the publisher

On the spectral dimension of causal triangulations

ArXiv 0908.3643 (2009)

Authors:

Bergfinnur Durhuus, Thordur Jonsson, John F Wheater

Abstract:

We introduce an ensemble of infinite causal triangulations, called the uniform infinite causal triangulation, and show that it is equivalent to an ensemble of infinite trees, the uniform infinite planar tree. It is proved that in both cases the Hausdorff dimension almost surely equals 2. The infinite causal triangulations are shown to be almost surely recurrent or, equivalently, their spectral dimension is almost surely less than or equal to 2. We also establish that for certain reduced versions of the infinite causal triangulations the spectral dimension equals 2 both for the ensemble average and almost surely. The triangulation ensemble we consider is equivalent to the causal dynamical triangulation model of two-dimensional quantum gravity and therefore our results apply to that model.
Details from ArXiV
More details from the publisher

On the spectral dimension of causal triangulations

(2009)

Authors:

Bergfinnur Durhuus, Thordur Jonsson, John F Wheater
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Current page 7
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet