Dynamical dimensional reduction in toy models of 4D causal quantum gravity
ArXiv 1202.271 (2012)
Abstract:
In recent years several approaches to quantum gravity have found evidence for a scale dependent spectral dimension of space-time varying from four at large scales to two at small scales of order of the Planck length. The first evidence came from numerical results on four-dimensional causal dynamical triangulations (CDT) [Ambjorn et al., Phys. Rev. Lett. 95 (2005) 171]. Since then little progress has been made in analytically understanding the numerical results coming from the CDT approach and showing that they remain valid when taking the continuum limit. Here we argue that the spectral dimension can be determined from a model with fewer degrees of freedom obtained from the CDTs by "radial reduction". In the resulting "toy" model we can take the continuum limit analytically and obtain a scale dependent spectral dimension varying from four to two with scale and having functional behaviour exactly of the form which was conjectured on the basis of the numerical results.Dynamical dimensional reduction in toy models of 4D causal quantum gravity
(2012)
Spectral dimension flow on continuum random multigraph
SIXTH INTERNATIONAL SCHOOL ON FIELD THEORY AND GRAVITATION-2012 1483 (2012) 455-460
Continuum Random Combs and Scale Dependent Spectral Dimension
ArXiv 1101.4174 (2011)
Abstract:
Numerical computations have suggested that in causal dynamical triangulation models of quantum gravity the effective dimension of spacetime in the UV is lower than in the IR. In this paper we develop a simple model based on previous work on random combs, which share some of the properties of CDT, in which this effect can be shown to occur analytically. We construct a definition for short and long distance spectral dimensions and show that the random comb models exhibit scale dependent spectral dimension defined in this way. We also observe that a hierarchy of apparent spectral dimensions may be obtained in the cross-over region between UV and IR regimes for suitable choices of the continuum variables. Our main result is valid for a wide class of tooth length distributions thereby extending previous work on random combs by Durhuus et al.Continuum Random Combs and Scale Dependent Spectral Dimension
(2011)