Multigraph models for causal quantum gravity and scale dependent spectral dimension
ArXiv 1202.6322 (2012)
Abstract:
We study random walks on ensembles of a specific class of random multigraphs which provide an "effective graph ensemble" for the causal dynamical triangulation (CDT) model of quantum gravity. In particular, we investigate the spectral dimension of the multigraph ensemble for recurrent as well as transient walks. We investigate the circumstances in which the spectral dimension and Hausdorff dimension are equal and show that this occurs when rho, the exponent for anomalous behaviour of the resistance to infinity, is zero. The concept of scale dependent spectral dimension in these models is introduced. We apply this notion to a multigraph ensemble with a measure induced by a size biased critical Galton-Watson process which has a scale dependent spectral dimension of two at large scales and one at small scales. We conclude by discussing a specific model related to four dimensional CDT which has a spectral dimension of four at large scales and two at small scales.Multigraph models for causal quantum gravity and scale dependent spectral dimension
(2012)
Dynamical dimensional reduction in toy models of 4D causal quantum gravity
ArXiv 1202.271 (2012)
Abstract:
In recent years several approaches to quantum gravity have found evidence for a scale dependent spectral dimension of space-time varying from four at large scales to two at small scales of order of the Planck length. The first evidence came from numerical results on four-dimensional causal dynamical triangulations (CDT) [Ambjorn et al., Phys. Rev. Lett. 95 (2005) 171]. Since then little progress has been made in analytically understanding the numerical results coming from the CDT approach and showing that they remain valid when taking the continuum limit. Here we argue that the spectral dimension can be determined from a model with fewer degrees of freedom obtained from the CDTs by "radial reduction". In the resulting "toy" model we can take the continuum limit analytically and obtain a scale dependent spectral dimension varying from four to two with scale and having functional behaviour exactly of the form which was conjectured on the basis of the numerical results.Dynamical dimensional reduction in toy models of 4D causal quantum gravity
(2012)