Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Julia Yeomans OBE FRS

Professor of Physics

Research theme

  • Biological physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Julia.Yeomans@physics.ox.ac.uk
Telephone: 01865 (2)76884 (college),01865 (2)73992
Rudolf Peierls Centre for Theoretical Physics, room 70.10
www-thphys.physics.ox.ac.uk/people/JuliaYeomans
  • About
  • Publications

Collective chemotaxis of active nematic droplets

Physical Review E: Statistical, Nonlinear, and Soft Matter Physics American Physical Society 102 (2020) 020601

Authors:

Rian Hughes, Julia Yeomans

Abstract:

Collective chemotaxis plays a key role in the navigation of cell clusters in e.g. embryogenesis and cancer metastasis. Using the active nematic continuum equations, coupled to a chemical field that regulates activity, we demonstrate and explain a physical mechanism that results in collective chemotaxis. The activity naturally leads to cell polarisation at the cluster interface which induces outwards flows. The chemical gradient then breaks the symmetry of the flow field, leading to a net motion. The velocity is independent of the cluster size in agreement with experiment.
More details from the publisher
Details from ORA
More details
More details

Bacteria solve the problem of crowding by moving slowly

(2020)

Authors:

Oliver J Meacock, Amin Doostmohammadi, Kevin R Foster, Julia M Yeomans, William M Durham
More details from the publisher

Active inter-cellular forces in collective cell motility.

Journal of the Royal Society, Interface 17:169 (2020) 20200312-20200312

Authors:

Guanming Zhang, Romain Mueller, Amin Doostmohammadi, Julia M Yeomans

Abstract:

The collective behaviour of confluent cell sheets is strongly influenced both by polar forces, arising through cytoskeletal propulsion, and by active inter-cellular forces, which are mediated by interactions across cell-cell junctions. We use a phase-field model to explore the interplay between these two contributions and compare the dynamics of a cell sheet when the polarity of the cells aligns to (i) their main axis of elongation, (ii) their velocity and (iii) when the polarity direction executes a persistent random walk. In all three cases, we observe a sharp transition from a jammed state (where cell rearrangements are strongly suppressed) to a liquid state (where the cells can move freely relative to each other) when either the polar or the inter-cellular forces are increased. In addition, for case (ii) only, we observe an additional dynamical state, flocking (solid or liquid), where the majority of the cells move in the same direction. The flocking state is seen for strong polar forces, but is destroyed as the strength of the inter-cellular activity is increased.
More details from the publisher
Details from ORA
More details
More details

Flow states and transitions of an active nematic in a three dimensional channel

(2020)

Authors:

Santhan Chandragiri, Amin Doostmohammadi, Julia M Yeomans, Sumesh P Thampi
More details from the publisher

Degenerate states, emergent dynamics and fluid mixing by magnetic rotors.

Soft matter 16:28 (2020) 6484-6492

Authors:

Takuma Kawai, Daiki Matsunaga, Fanlong Meng, Julia M Yeomans, Ramin Golestanian

Abstract:

We investigate the collective motion of magnetic rotors suspended in a viscous fluid under a uniform rotating magnetic field. The rotors are positioned on a square lattice, and low Reynolds hydrodynamics is assumed. For a 3 × 3 array of magnets, we observe three characteristic dynamical patterns as the external field strength is varied: a synchronized pattern, an oscillating pattern, and a chessboard pattern. The relative stability of these depends on the competition between the energy due to the external magnetic field and the energy of the magnetic dipole-dipole interactions among the rotors. We argue that the chessboard pattern can be understood as an alternation in the stability of two degenerate states, characterized by striped and spin-ice configurations, as the applied magnetic field rotates. For larger arrays, we observe propagation of slip waves that are similar to metachronal waves. The rotor arrays have potential as microfluidic devices that can mix fluids and create vortices of different sizes.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • Current page 13
  • Page 14
  • Page 15
  • Page 16
  • Page 17
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet