Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Julia Yeomans OBE FRS

Professor of Physics

Research theme

  • Biological physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Julia.Yeomans@physics.ox.ac.uk
Telephone: 01865 (2)76884 (college),01865 (2)73992
Rudolf Peierls Centre for Theoretical Physics, room 70.10
www-thphys.physics.ox.ac.uk/people/JuliaYeomans
  • About
  • Publications

Bacteria solve the problem of crowding by moving slowly (Nov, 10.1038/s41567-020-01070-6, 2020)

NATURE PHYSICS (2021)

Authors:

Oj Meacock, A Doostmohammadi, Kr Foster, Jm Yeomans, Wm Durham

Abstract:

© 2021, The Author(s), under exclusive licence to Springer Nature Limited. In the version of this Letter originally published online, the author J. M. Yeomans was incorrectly affiliated with ‘Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark’, instead of ‘Rudolf Peierls Centre for Theoretical Physics, Clarendon Laboratory, University of Oxford, Oxford, UK’. This affiliation has now been added, and other footnotes renumbered accordingly, in all versions of the Letter.
More details from the publisher
More details

Memory effects, arches and polar defect ordering at the cross-over from wet to dry active nematics.

Soft matter (2021)

Authors:

Mehrana R Nejad, Amin Doostmohammadi, Julia M Yeomans

Abstract:

We use analytic arguments and numerical solutions of the continuum, active nematohydrodynamic equations to study how friction alters the behaviour of active nematics. Concentrating on the case where there is nematic ordering in the passive limit, we show that, as the friction is increased, memory effects become more prominent and +1/2 topological defects leave increasingly persistent trails in the director field as they pass. The trails are preferential sites for defect formation and they tend to impose polar order on any new +1/2 defects. In the absence of noise and for high friction, it becomes very difficult to create defects, but trails formed by any defects present at the beginning of the simulations persist and organise into parallel arch-like patterns in the director field. We show aligned arches of equal width are approximate steady state solutions of the equations of motion which co-exist with the nematic state. We compare our results to other models in the literature, in particular dry systems with no hydrodynamics, where trails, arches and polar defect ordering have also been observed.
More details from the publisher
Details from ORA
More details
More details

Bacteria solve the problem of crowding by moving slowly

Nature Physics Springer Nature 17:2 (2020) 205-210

Authors:

Oliver Meacock, Amin Doostmohammadi, Kevin Foster, Julia Yeomans, William Durham

Abstract:

Bacteria commonly live attached to surfaces in dense collectives containing billions of cells1. While it is known that motility allows these groups to expand en masse into new territory2,3,4,5, how bacteria collectively move across surfaces under such tightly packed conditions remains poorly understood. Here we combine experiments, cell tracking and individual-based modelling to study the pathogen Pseudomonas aeruginosa as it collectively migrates across surfaces using grappling-hook-like pili3,6,7. We show that the fast-moving cells of a hyperpilated mutant are overtaken and outcompeted by the slower-moving wild type at high cell densities. Using theory developed to study liquid crystals8,9,10,11,12,13, we demonstrate that this effect is mediated by the physics of topological defects, points where cells with different orientations meet one another. Our analyses reveal that when defects with topological charge +1/2 collide with one another, the fast-moving mutant cells rotate to point vertically and become trapped. By moving more slowly, wild-type cells avoid this trapping mechanism and generate collective behaviour that results in faster migration. In this way, the physics of liquid crystals explains how slow bacteria can outcompete faster cells in the race for new territory.
More details from the publisher
Details from ORA
More details

The role of friction in multidefect ordering

Physical Review Letters American Physical Society 125 (2020) 218004

Authors:

Kristian Thijssen, mehrana Nejad, Julia Yeomans

Abstract:

We use continuum simulations to study the impact of friction on the ordering of defects in an active nematic. Even in a frictionless system, +1/2 defects tend to align side by side and orient antiparallel reflecting their propensity to form, and circulate with, flow vortices. Increasing friction enhances the effectiveness of the defect-defect interactions, and defects form dynamically evolving, large-scale, positionally, and orientationally ordered structures, which can be explained as a competition between hexagonal packing, preferred by the −1/2 defects, and rectangular packing, preferred by the +1/2 defects.
More details from the publisher
Details from ORA
More details
More details

Morphology of active deformable 3D droplets

(2020)

Authors:

Liam J Ruske, Julia M Yeomans
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • Current page 12
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet