Mesoscale modelling of polymer aggregate digestion
Current Research in Food Science Elsevier 3:November 2020 (2020) 122-133
Abstract:
We use mesoscale simulations to gain insight into the digestion of biopolymers by studying the break-up dynamics of polymer aggregates (boluses) bound by physical cross-links. We investigate aggregate evolution, establishing that the linking bead fraction and the interaction energy are the main parameters controlling stability with respect to diffusion. We show via a simplified model that chemical breakdown of the constituent molecules causes aggregates that would otherwise be stable to disperse. We further investigate breakdown of biopolymer aggregates in the presence of fluid flow. Shear flow in the absence of chemical breakdown induces three different regimes depending on the flow Weissenberg number (). i) At , shear flow has a negligible effect on the aggregates. ii) At , the aggregates behave approximately as solid bodies and move and rotate with the flow. iii) At , the energy input due to shear overcomes the attractive cross-linking interactions and the boluses are broken up. Finally, we study bolus evolution under the combined action of shear flow and chemical breakdown, demonstrating a synergistic effect between the two at high reaction rates.Degenerate states, emergent dynamics and fluid mixing by magnetic rotors
(2020)
Polar jets of swimming bacteria condensed by a patterned liquid crystal
Nature Physics Nature Research 16 (2020) 481-487
Abstract:
Active matter exhibits remarkable collective behaviour in which flows, continuously generated by active particles, are intertwined with the orientational order of these particles. The relationship remains poorly understood as the activity and order are difficult to control independently. Here we demonstrate important facets of this interplay by exploring the dynamics of swimming bacteria in a liquid crystalline environment with predesigned periodic splay and bend in molecular orientation. The bacteria are expelled from the bend regions and condense into polar jets that propagate and transport cargo unidirectionally along the splay regions. The bacterial jets remain stable even when the local concentration exceeds the threshold of bending instability in a non-patterned system. Collective polar propulsion and the different roles of bend and splay are explained by an advection–diffusion model and by numerical simulations that treat the system as a two-phase active nematic. The ability of prepatterned liquid crystalline medium to streamline the chaotic movements of swimming bacteria into polar jets that can carry cargo along a predesigned trajectory opens the door for potential applications in microscale delivery and soft microrobotics.Active matter in a viscoelastic environment
Physical Review Fluids American Physical Society 5:2020 (2020) 023102
Abstract:
Active matter systems such as eukaryotic cells and bacteria continuously transform chemical energy to motion. Hence living systems exert active stresses on the complex environments in which they reside. One recurring aspect of this complexity is the viscoelasticity of the medium surrounding living systems: bacteria secrete their own viscoelastic extracellular matrix, and cells constantly deform, proliferate, and self-propel within viscoelastic networks of collagen. It is therefore imperative to understand how active matter modifies, and gets modified by, viscoelastic fluids. Here, we present a two-phase model of active nematic matter that dynamically interacts with a passive viscoelastic polymeric phase and perform numerical simulations in two dimensions to illustrate its applicability. Motivated by recent experiments we first study the suppression of cell division by a viscoelastic medium surrounding the cell. We further show that the self-propulsion of a model keratocyte cell is modified by the polymer relaxation of the surrounding viscoelastic fluid in a non-uniform manner and find that increasing polymer viscosity effectively suppresses the cell motility. Lastly, we explore the hampering impact of the viscoelastic medium on the generic hydrodynamic instabilities of active nematics by simulating the dynamics of an active stripe within a polymeric fluid. The model presented here can provide a framework for investigating more complex dynamics such as the interaction of multicellular growing systems with viscoelastic environments.Activity induced nematic order in isotropic liquid crystals
Journal of Statistical Physics Springer Nature 7:4 (2020) E229-E237