Emulating radiative transfer in a numerical weather prediction model
Copernicus Publications (2023)
Environmental Precursors to Mesoscale Convective Systems
Copernicus Publications (2023)
A topological perspective on weather regimes
Climate Dynamics 60:5-6 (2023) 1415-1445
Abstract:
It has long been suggested that the mid-latitude atmospheric circulation possesses what has come to be known as ‘weather regimes’, loosely categorised as regions of phase space with above-average density and/or extended persistence. Their existence and behaviour has been extensively studied in meteorology and climate science, due to their potential for drastically simplifying the complex and chaotic mid-latitude dynamics. Several well-known, simple non-linear dynamical systems have been used as toy-models of the atmosphere in order to understand and exemplify such regime behaviour. Nevertheless, no agreed-upon and clear-cut definition of a ‘regime’ exists in the literature, and unambiguously detecting their existence in the atmospheric circulation is stymied by the high dimensionality of the system. We argue here for an approach which equates the existence of regimes in a dynamical system with the existence of non-trivial topological structure of the system’s attractor. We show using persistent homology, an algorithmic tool in topological data analysis, that this approach is computationally tractable, practically informative, and identifies the relevant regime structure across a range of examples.
Increased wintertime European atmospheric blocking frequencies in General Circulation Models with an eddy-permitting ocean
npj Climate and Atmospheric Science 6:1 (2023) 50
Abstract:
Midlatitude atmospheric blocking events are important drivers of long-lasting extreme weather conditions at regional to continental scales. However, modern climate models consistently underestimate their frequency of occurrence compared to observations, casting doubt on future projections of climate extremes. Using the prominent and largely underestimated winter blocking events in Europe as a test case, this study first introduces a spatio-temporal approach to study blocking activity based on a clustering technique, allowing to assess models’ ability to simulate both realistic frequencies and locations of blocking events. A sensitivity analysis from an ensemble of 49 simulations from 24 coupled climate models shows that the presence of a mesoscale eddy-permitting ocean model increases the realism of simulated blocking events for almost all types of patterns clustered from observations. This finding is further explained and supported by concomitant reductions in well-documented biases in Gulf Stream and North Atlantic Current positions, as well as in the midlatitude jet stream variability.
CMIP6 Models Trend Toward Less Persistent European Blocking Regimes in a Warming Climate
Geophysical Research Letters American Geophysical Union (AGU) 49:24 (2022)