Euclid preparation

Astronomy & Astrophysics EDP Sciences 700 (2025) a78

Authors:

S de la Torre, F Marulli, E Keihänen, A Viitanen, M Viel, A Veropalumbo, E Branchini, D Tavagnacco, F Rizzo, J Valiviita, V Lindholm, V Allevato, G Parimbelli, E Sarpa, Z Ghaffari, A Amara, S Andreon, N Auricchio, C Baccigalupi, M Baldi, S Bardelli, A Basset, D Bonino, M Brescia, J Brinchmann, A Caillat, S Camera, V Capobianco, C Carbone, J Carretero, S Casas, FJ Castander, M Castellano, G Castignani, S Cavuoti, A Cimatti, C Colodro-Conde, G Congedo, CJ Conselice, L Conversi, Y Copin, F Courbin, HM Courtois, M Crocce, A Da Silva, H Degaudenzi, G De Lucia, AM Di Giorgio, J Dinis, F Dubath, CAJ Duncan, X Dupac, S Dusini, M Farina, S Farrens, F Faustini, S Ferriol, N Fourmanoit, M Frailis, E Franceschi, P Franzetti, M Fumana, S Galeotta, K George, W Gillard, B Gillis, C Giocoli, P Gómez-Alvarez, BR Granett, A Grazian, F Grupp, L Guzzo, SVH Haugan, W Holmes, F Hormuth, A Hornstrup, S Ilić, K Jahnke, M Jhabvala, B Joachimi, S Kermiche, A Kiessling, M Kilbinger, B Kubik, M Kunz, H Kurki-Suonio, S Ligori, PB Lilje, I Lloro, G Mainetti, D Maino, E Maiorano, O Mansutti, O Marggraf, K Markovic, M Martinelli, N Martinet, R Massey, S Maurogordato, E Medinaceli, S Mei, M Melchior, Y Mellier, M Meneghetti, E Merlin, G Meylan, M Moresco, B Morin, L Moscardini, E Munari, C Neissner, S-M Niemi, C Padilla, S Paltani, F Pasian, K Pedersen, WJ Percival, V Pettorino, S Pires, G Polenta, M Poncet, L Pozzetti, F Raison, A Renzi, J Rhodes, G Riccio, E Romelli, M Roncarelli, E Rossetti, R Saglia, Z Sakr, AG Sánchez, D Sapone, B Sartoris, P Schneider, T Schrabback, M Scodeggio, A Secroun, E Sefusatti, G Seidel, M Seiffert, S Serrano, C Sirignano, G Sirri, L Stanco, J Steinwagner, C Surace, P Tallada-Crespí, AN Taylor, I Tereno, R Toledo-Moreo, F Torradeflot, A Tsyganov, I Tutusaus, L Valenziano, T Vassallo, Y Wang, J Weller, A Zacchei, G Zamorani, E Zucca, A Biviano, M Bolzonella, E Bozzo, C Burigana, M Calabrese, D Di Ferdinando, JA Escartin Vigo, R Farinelli, F Finelli, L Gabarra, J Gracia-Carpio, S Matthew, N Mauri, A Mora, A Pezzotta, M Pöntinen, V Scottez, P Simon, A Spurio Mancini, M Tenti, M Wiesmann, Y Akrami, IT Andika, S Anselmi, M Archidiacono, F Atrio-Barandela, A Balaguera-Antolinez, D Bertacca, M Bethermin, A Blanchard, L Blot, H Böhringer, S Borgani, ML Brown, S Bruton, R Cabanac, A Calabro, B Camacho Quevedo, G Cañas-Herrera, A Cappi, F Caro, CS Carvalho, T Castro, KC Chambers, F Cogato, S Contarini, AR Cooray, O Cucciati, S Davini, F De Paolis, G Desprez, A Díaz-Sánchez, S Di Domizio, H Dole, S Escoffier, AG Ferrari, PG Ferreira, A Finoguenov, A Fontana, K Ganga, J García-Bellido, T Gasparetto, V Gautard, E Gaztanaga, F Giacomini, F Gianotti, G Gozaliasl, A Gregorio, M Guidi, CM Gutierrez, A Hall, S Hemmati, H Hildebrandt, J Hjorth, A Jimenez Muñoz, S Joudaki, JJE Kajava, Y Kang, V Kansal, D Karagiannis, CC Kirkpatrick, S Kruk, M Lattanzi, AMC Le Brun, S Lee, J Le Graet, L Legrand, M Lembo, J Lesgourgues, TI Liaudat, A Loureiro, J Macias-Perez, M Magliocchetti, F Mannucci, R Maoli, J Martín-Fleitas, CJAP Martins, L Maurin, RB Metcalf, M Miluzio, P Monaco, C Moretti, G Morgante, C Murray, S Nadathur, K Naidoo, A Navarro-Alsina, S Nesseris, K Paterson, L Patrizii, A Pisani, V Popa, D Potter, P Reimberg, I Risso, P-F Rocci, M Sahlén, A Schneider, M Schultheis, D Sciotti, E Sellentin, M Sereno, A Silvestri, LC Smith, K Tanidis, C Tao, N Tessore, G Testera, R Teyssier, S Toft, S Tosi, A Troja, M Tucci, C Valieri, D Vergani, G Verza, P Vielzeuf, NA Walton

Abstract:

The two-point correlation function of the galaxy spatial distribution is a major cosmological observable that enables constraints on the dynamics and geometry of the Universe. The Euclid mission is aimed at performing an extensive spectroscopic survey of approximately 20–30 million H α -emitting galaxies up to a redshift of about 2. This ambitious project seeks to elucidate the nature of dark energy by mapping the three-dimensional clustering of galaxies over a significant portion of the sky. This paper presents the methodology and software developed for estimating the three-dimensional two-point correlation function within the Euclid Science Ground Segment. The software is designed to overcome the significant challenges posed by the large and complex Euclid dataset, which involves millions of galaxies. The key challenges include efficient pair counting, managing computational resources, and ensuring the accuracy of the correlation function estimation. The software leverages advanced algorithms, including k -d tree, octree, and linked-list data partitioning strategies, to optimise the pair-counting process. These methods are crucial for handling the massive volume of data efficiently. The implementation also includes parallel processing capabilities using shared-memory open multi-processing to further enhance performance and reduce computation times. Extensive validation and performance testing of the software are presented. Those have been performed by using various mock galaxy catalogues to ensure that it meets the stringent accuracy requirement of the Euclid mission. The results indicate that the software is robust and can reliably estimate the two-point correlation function, which is essential for deriving cosmological parameters with high precision. Furthermore, the paper discusses the expected performance of the software during different stages of Euclid Wide Survey observations and forecasts how the precision of the correlation function measurements will improve over the mission’s timeline, highlighting the software’s capability to handle large datasets efficiently.

The Simons Observatory: Assessing the Impact of Dust Complexity on the Recovery of Primordial $B$-modes

(2025)

Authors:

Yiqi Liu, Susanna Azzoni, Susan E Clark, Brandon S Hensley, Là O Vacher, David Alonso, Carlo Baccigalupi, Michael L Brown, Alessandro Carones, Jens Chluba, Jo Dunkley, Carlos Hervías-Caimapo, Bradley R Johnson, Nicoletta Krachmalnicoff, Giuseppe Puglisi, Mathieu Remazeilles, Kevin Wolz

The Emergence and Ionizing Feedback of Pop III.1 Stars as Progenitors for Supermassive Black Holes

(2025)

Authors:

Mahsa Sanati, Jonathan C Tan, Julien Devriendt, Adrianne Slyz, Sergio Martin-Alvarez, Matteo la Torre, Benjamin Keller, Maya A Petkova, Pierluigi Monaco, Vieri Cammelli, Jasbir Singh, Matthew Hayes

MIGHTEE: A first look at MIGHTEE quasars

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1187

Authors:

Sarah V White, Ivan Delvecchio, Nathan Adams, Ian Heywood, Imogen H Whittam, Catherine L Hale, Neo Namane, Rebecca AA Bowler, Jordan D Collier

Abstract:

Abstract In this work we study a robust, Ks-band complete, spectroscopically-confirmed sample of 104 unobscured (Type-1) quasars within the COSMOS and XMM-LSS fields of the MeerKAT International GHz Tiered Extragalactic Exploration (MIGHTEE) Survey, at 0.60 < zspec < 3.41. The quasars are selected via gJKs colour-space and, with 1.3-GHz flux-densities reaching rms ≈ 3.0 μ Jy beam−1, we find a radio-loudness fraction of 5percnt. Thanks to the deep, multiwavelength datasets that are available over these fields, the properties of radio-loud and radio-quiet quasars can be studied in a statistically-robust way, with the emphasis of this work being on the active-galactic-nuclei (AGN)-related and star-formation-related contributions to the total radio emission. We employ multiple star-formation-rate estimates for the analysis so that our results can be compared more-easily with others in the literature, and find that the fraction of sources that have their radio emission dominated by the AGN crucially depends on the SFR estimate that is derived from the radio luminosity. When redshift dependence is not taken into account, a larger fraction of sources is classed as having their radio emission dominated by the AGN. When redshift dependence is considered, a larger fraction of our sample is tentatively classed as ‘starbursts’. We also find that the fraction of (possible) starbursts increases with redshift, and provide multiple suggestions for this trend.

He Awa Whiria: The Tidal Streams of Interstellar Objects

The Astrophysical Journal American Astronomical Society 988:1 (2025) 121

Authors:

John C Forbes, Michele T Bannister, Chris Lintott, Angus Forrest, Simon Portegies Zwart, Rosemary C Dorsey, Leah Albrow, Matthew J Hopkins

Abstract:

Upcoming surveys are likely to discover a new sample of interstellar objects (ISOs) within the solar system, but questions remain about the origin and distribution of this population within the Galaxy. ISOs are ejected from their host systems with a range of velocities, spreading out into tidal streams—analogous to the stellar streams routinely observed from the disruption of star clusters and dwarf galaxies. We create a simulation of ISO streams orbiting in the Galaxy, deriving a simple model for their density distribution over time. We then construct a population model to predict the properties of the streams in which the Sun is currently embedded. We find that the number of streams encountered by the Sun is quite large, ∼106 or more. However, the wide range of stream properties means that for reasonable future samples of ISOs observed in the solar system, we may see ISOs from the same star (“siblings”), and we are likely to see ISOs from the same star cluster (“cousins”). We also find that ISOs are typically not traceable to their parent star, though this may be possible for ISO siblings. Any ISOs observed with a common origin will come from younger, dynamically colder streams.