Colloquium: The Cosmic Dipole Anomaly

(2025)

Authors:

Nathan Secrest, Sebastian von Hausegger, Mohamed Rameez, Roya Mohayaee, Subir Sarkar

Euclid preparation

Astronomy & Astrophysics EDP Sciences 698 (2025) ARTN A14

Authors:

C Bellhouse, Jb Golden-Marx, Sp Bamford, Na Hatch, M Kluge, A Ellien, Sl Ahad, P Dimauro, F Durret, Ah Gonzalez, Y Jimenez-Teja, M Montes, M Sereno, E Slezak, M Bolzonella, G Castignani, O Cucciati, G De Lucia, Z Ghaffari, L Moscardini, R Pello, L Pozzetti, T Saifollahi, As Borlaff, N Aghanim, B Altieri, A Amara, S Andreon, C Baccigalupi, M Baldi, S Bardelli, A Basset, P Battaglia, R Bender, D Bonino, E Branchini, M Brescia, A Caillat, S Camera, V Capobianco, C Carbone, Vf Cardone, J Carretero, S Casas, M Castellano, S Cavuoti, A Cimatti, C Colodro-Conde, G Congedo, Cj Conselice

Abstract:

The intracluster light (ICL) permeating galaxy clusters is a tracer of the cluster assembly history and potentially a tracer of their dark matter structure. In this work, we explore the capability of the Euclid Wide Survey to detect ICL using HE-band mock images. We simulated clusters across a range of redshifts (0.3-1.8) and halo masses (1013:9-1015:0 M_) using an observationally motivated model of ICL. We identified a 50- 200 kpc circular annulus around the brightest cluster galaxy (BCG) in which the signal-to-noise ratio of the ICL is maximised and used the S/N within this aperture as our figure of merit for ICL detection.We compared three state-of-the-art methods for ICL detection and found that a method that performs simple aperture photometry after high-surface brightness source masking is able to detect ICL with minimal bias for clusters more massive than 1014:2 M_. The S/N of the ICL detection is primarily limited by the redshift of the cluster, which is driven by cosmological dimming rather than the mass of the cluster. Assuming the ICL in each cluster contains 15% of the stellar light, we forecast that Euclid will be able to measure the presence of ICL in up to _80 000 clusters of >1014:2 M_ between z = 0:3 and 1.5 with an S/N > 3. Half of these clusters will reside below z = 0:75, and the majority of those below z = 0:6 will be detected with an S/N > 20. A few thousand clusters at 1:3 < z < 1:5 will have ICL detectable with an S/N > 3. The surface brightness profile of the ICL model is strongly dependent on both the mass of the cluster and the redshift at which it is observed so that the outer ICL is best observed in the most massive clusters of >1014:7 M_. Euclid will detect the ICL at a distance of more than 500 kpc from the BCG, up to z = 0:7, in several hundred of these massive clusters over its large survey volume.

Modified Newtonian Dynamics: Observational Successes and Failures

ArXiv 2505.21638 (2025)

Inflaton Dynamics in Higher-Derivative Scalar-Tensor Theories of Gravity

ArXiv 2505.17986 (2025)

Authors:

Sam E Brady, Katy Clough, Pau Figueras, Áron D Kovács

Cross-correlating the EMU Pilot Survey 1 with CMB lensing: Constraints on cosmology and galaxy bias with harmonic-space power spectra

Publications of the Astronomical Society of Australia Cambridge University Press 42 (2025) e062

Authors:

Konstantinos Tanidis, Jacobo Asorey, Chandra Shekhar Saraf, Catherine Laura Hale, Benedict Bahr-Kalus, David Parkinson, Stefano Camera, Ray Norris, Andrew Hopkins, Maciej Bilicki, Nikhel Gupta

Abstract:

We measured the harmonic-space power spectrum of Galaxy clustering auto-correlation from the Evolutionary Map of the Universe Pilot Survey 1 data (EMU PS1) and its cross-correlation with the lensing convergence map of cosmic microwave background (CMB) from Planck Public Release 4 at the linear scale range from to 500. We applied two flux density cuts at and mJy on the radio galaxies observed at 944MHz and considered two source detection algorithms. We found the auto-correlation measurements from the two algorithms at the 0.18 mJy cut to deviate for due to the different criteria assumed on the source detection and decided to ignore data above this scale. We report a cross-correlation detection of EMU PS1 with CMB lensing at 5.5 , irrespective of flux density cut. In our theoretical modelling we considered the SKADS and T-RECS redshift distribution simulation models that yield consistent results, a linear and a non-linear matter power spectrum, and two linear galaxy bias models. That is a constant redshift-independent galaxy bias and a constant amplitude galaxy bias . By fixing a cosmology model and considering a non-linear matter power spectrum with SKADS, we measured a constant galaxy bias at mJy ( mJy) with ( ) and a constant amplitude bias with ( ). When is a free parameter for the same models at mJy ( mJy) with the constant model we found ( ), while with the constant amplitude model we measured ( ), respectively. Our results agree at with the measurements from Planck CMB and the weak lensing surveys and also show the potential of cosmology studies with future radio continuum survey data.