The Atacama Cosmology Telescope: DR6 power spectra, likelihoods and ΛCDM parameters
Journal of Cosmology and Astroparticle Physics IOP Publishing 2025:11 (2025) 062
Abstract:
We present power spectra of the cosmic microwave background (CMB) anisotropy in temperature and polarization, measured from the Data Release 6 maps made from Atacama Cosmology Telescope (ACT) data. These cover 19,000 deg2 of sky in bands centered at 98, 150 and 220 GHz, with white noise levels three times lower than Planck in polarization. We find that the ACT angular power spectra estimated over 10,000 deg2, and measured to arcminute scales in TT, TE and EE, are well fit by the sum of CMB and foregrounds, where the CMB spectra are described by the ΛCDM model. Combining ACT with larger-scale Planck data, the joint P-ACT dataset provides tight limits on the ingredients, expansion rate, and initial conditions of the universe. We find similar constraining power, and consistent results, from either the Planck power spectra or from ACT combined with WMAP data, as well as from either temperature or polarization in the joint P-ACT dataset. When combined with CMB lensing from ACT and Planck, and baryon acoustic oscillation data from the Dark Energy Spectroscopic Instrument (DESI DR1), we measure a baryon density of Ω b h 2 = 0.0226 ± 0.0001, a cold dark matter density of Ω c h 2 = 0.118 ± 0.001, a Hubble constant of H 0 = 68.22 ± 0.36 km/s/Mpc, a spectral index of ns = 0.974 ± 0.003, and an amplitude of density fluctuations of σ 8 = 0.813 ± 0.005. Including the DESI DR2 data tightens the Hubble constant to H 0 = 68.43 ± 0.27 km/s/Mpc; ΛCDM parameters agree between the P-ACT and DESI DR2 data at the 1.6σ level. We find no evidence for excess lensing in the power spectrum, and no departure from spatial flatness. The contribution from Sunyaev-Zel'dovich (SZ) anisotropy is detected at high significance; we find evidence for a tilt with suppressed small-scale power compared to our baseline SZ template spectrum, consistent with hydrodynamical simulations with feedback.The Simons Observatory: assessing the impact of dust complexity on the recovery of primordial B-modes
Journal of Cosmology and Astroparticle Physics IOP Publishing 2025:11 (2025) 024
Abstract:
We investigate how dust foreground complexity can affect measurements of the tensor-to-scalar ratio, r, in the context of the Simons Observatory, using a cross-spectrum component separation analysis. Employing a suite of simulations with realistic Galactic dust emission, we find that spatial variation in the dust frequency spectrum, parametrized by βd , can bias the estimate for r when modeled using a low-order moment expansion to capture this spatial variation. While this approach performs well across a broad range of dust complexity, the bias increases with more extreme spatial variation in dust frequency spectrum, reaching as high as r ∼ 0.03 for simulations with no primordial tensors and a spatial dispersion of σ(βd ) ≃ 0.3 — the most extreme case considered, yet still consistent with current observational constraints. This bias is driven by changes in the ℓ-dependence of the dust power spectrum as a function of frequency that can mimic a primordial B-mode tensor signal. Although low-order moment expansions fail to capture the full effect when the spatial variations of βd become large and highly non-Gaussian, our results show that extended parametric methods can still recover unbiased estimates of r under a wide range of dust complexities. We further find that the bias in r, at the highest degrees of dust complexity, is largely insensitive to the spatial structure of the dust amplitude and is instead dominated by spatial correlations between βd and dust amplitude, particularly at higher orders. If βd does spatially vary at the highest levels investigated here, we would expect to use more flexible foreground models to achieve an unbiased constraint on r for the noise levels anticipated from the Simons Observatory.MEGATRON: the impact of non-equilibrium effects and local radiation fields on the circumgalactic medium at cosmic noon
(2025)
MEGATRON: The environments of Population III stars at Cosmic Dawn and their connection to present day galaxies
(2025)
Impact of Cosmic Ray-driven Outflows on Ly α Emission in Cosmological Simulations
The Astrophysical Journal American Astronomical Society 992:1 (2025) 67