Calibrating baryonic effects in cosmic shear with external data in the LSST era
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 543:2 (2025) 1518-1534
Abstract:
<jats:title>ABSTRACT</jats:title> <jats:p>Cosmological constraints derived from weak lensing (WL) surveys are limited by baryonic effects, which suppress the non-linear matter power spectrum on small scales. By combining WL measurements with data from external tracers of the gas around massive structures, it is possible to calibrate baryonic effects and, therefore, obtain more precise cosmological constraints. In this study, we generate mock data for a Stage-IV weak lensing survey such as the Legacy Survey of Space and Time (LSST), X-ray gas fractions, and stacked kinetic Sunyaev–Zel’dovich (kSZ) measurements, to jointly constrain cosmological and astrophysical parameters describing baryonic effects (using the Baryon Correction Model–BCM). First, using WL data alone, we quantify the level to which the BCM parameters will need to be constrained to recover the cosmological constraints obtained under the assumption of perfect knowledge of baryonic feedback. We identify the most relevant baryonic parameters and determine that they must be calibrated to a precision of $\sim 10$–20 per cent to avoid significant degradation of the fiducial WL constraints. We forecast that long-term X-ray data from $\mathcal {O}(5000)$ clusters should be able to reach this threshold for the parameters that characterize the abundance of hot virialized gas. Constraining the distribution of ejected gas presents a greater challenge, however, but we forecast that long-term kSZ data from a cosmic microwave background-S4-like experiment should achieve the level of precision required for full self-calibration.</jats:p>Evidence for inverse Compton scattering in high-redshift Lyman-break galaxies
Monthly Notices of the Royal Astronomical Society Oxford University Press 543:1 (2025) 507-517
Abstract:
Radio continuum emission provides a unique opportunity to study star formation unbiased by dust obscuration. However, if radio observations are to be used to accurately trace star formation to high redshifts, it is crucial that the physical processes that affect the radio emission from star-forming galaxies are well understood. While inverse Compton (IC) losses from the cosmic microwave background (CMB) are negligible in the local universe, the rapid increase in the strength of the CMB energy density with redshift [] means that this effect becomes increasingly important at . Using a sample of high-redshift () Lyman-break galaxies selected in the rest-frame ultraviolet (UV), we have stacked radio observations from the MIGHTEE survey to estimate their 1.4-GHz flux densities. We find that for a given rest-frame UV magnitude, the 1.4-GHz flux density and luminosity decrease with redshift. We compare these results to the theoretical predicted effect of energy losses due to IC scattering off the CMB, and find that the observed decrease is consistent with this explanation. We discuss other possible causes for the observed decrease in radio flux density with redshift at a given UV magnitude, such as a top-heavy initial mass function at high redshift or an evolution of the dust properties, but suggest that IC scattering is the most compelling explanation.The Visibility of the Ōtautahi–Oxford Interstellar Object Population Model in LSST
The Planetary Science Journal IOP Publishing 6:9 (2025) 214
Abstract:
With a new probabilistic technique for sampling interstellar object (ISO) orbits with high efficiency, we assess the observability of ISOs under a realistic cadence for the upcoming Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST). Using the Ōtautahi–Oxford population model, we show that there will be complex on-sky structure in the pattern of direction and velocity revealed by the detected ISO population, with the expected enhanced northern flux complicating efforts to derive population parameters from the LSST’s predominately southern footprint. For reasonable luminosity functions with slopes of 2.5 ≤ qs ≤ 4.0, the most discoverable ISOs have Hr ≃ 14.6−20.7. The slope of the luminosity function of ISOs will be relatively quickly constrained by the characteristics of the LSST detected population, such as the distributions of perihelia, velocity at infinity, and discovery circumstances. Discoveries are evenly split around their perihelion passage and are biased to lower velocities. After their discovery by LSST, it will be rare for ISOs to be visible for less than a month; most will have mr ≤ 23 for months, and the window for spectroscopic characterization could be as long as 2 yr. While these probabilistic assessments are robust against model or spatial density refinements that change the absolute numbers of ISO discoveries, our simulations predict a yield of 6–51 asteroidal ISOs, which is similar to previous works and demonstrates the validity of our new methods.From a Different Star: 3I/ATLAS in the Context of the Ōtautahi–Oxford Interstellar Object Population Model
The Astrophysical Journal Letters American Astronomical Society 990:2 (2025) L30
Abstract:
The discovery of the third interstellar object (ISO), 3I/ATLAS (“3I”), provides a rare chance to directly observe a small body from another solar system. Studying its chemistry and dynamics will add to our understanding of how the processes of planetesimal formation and evolution happen across the Milky Way’s disk, and how such objects respond to the Milky Way’s potential. In this Letter, we present a first assessment of 3I in the context of the Ōtautahi–Oxford model, which uses data from Gaia in conjunction with models of protoplanetary disk chemistry and Galactic dynamics to predict the properties of the ISO population. The model shows that both the velocity and radiant of 3I are within the expected range. Its velocity predicts an age of over 7.6 Gyr and a high water mass fraction, which may become observable shortly. We also conclude that it is very unlikely that 3I shares an origin with either of the previous two ISO detections.The ALMA-CRISTAL survey: Resolved kinematic studies of main sequence star-forming galaxies at 4 < z < 6
Astronomy and Astrophysics 701 (2025)