MEGATRON: how the first stars create an iron metallicity plateau in the smallest dwarf galaxies

(2025)

Authors:

Martin P Rey, Harley Katz, Corentin Cadiou, Mahsa Sanati, Oscar Agertz, Jeremy Blaizot, Alex J Cameron, Nicholas Choustikov, Julien Devriendt, Uliana Hauk, Alexander P Ji, Gareth C Jones, Taysun Kimm, Isaac Laseter, Sergio Martin-Alvarez, Kosei Matsumoto, Autumn Pearce, Yves Revaz, Francisco Rodriguez Montero, Joki Rosdahl, Aayush Saxena, Adrianne Slyz, Richard Stiskalek, Anatole Storck, Oscar Veenema, Wonjae Yee

Robust cosmic shear with small-scale nulling

Journal of Cosmology and Astroparticle Physics IOP Publishing 2025:10 (2025) 017

Authors:

Giulia Piccirilli, Matteo Zennaro, Carlos García-García, David Alonso

Abstract:

Standard cosmological weak lensing analyses using cosmic shear are inevitably sensitive to small-scale, non-linear clustering from low-redshift structures. The need to adequately model the clustering of matter on this non-linear regime, accounting for both gravitational and baryonic effects, adds significant uncertainty to weak lensing studies, particularly in the context of near-future Stage-IV datasets. In this paper, inspired by previous work on so-called “nulling” techniques, we present a general method that selects the linear combinations of a given tomographic cosmic shear dataset that are least sensitive to small-scale non-linearities, by essentially suppressing the contribution from low-redshift structures. We apply this method to the latest public cosmic shear data from the Dark Energy Survey, DES-Y3, that corresponds to 3 years of observation, and show: a) that a large fraction of the signal is dominated by the single mode that is most affected by non-linear scales, and b) that removing this mode leads to a ∼ 1σ upwards shift in the preferred value of S 8 ≡ σ 8√(ΩM/0.3), alleviating the tension with current CMB data. However, the removal of the most contaminated mode also results in a significant increase in the statistical uncertainties. Taking this into account, we find this shift to be compatible with a random fluctuation caused by removing this most-contaminated mode at the ∼ 1.4σ level. We also show that this technique may be used by future Stage-IV surveys to mitigate the sensitivity of the final constraints to baryonic effects, trading precision for robustness.

The Simons Observatory: Quantifying the impact of beam chromaticity on large-scale B -mode science

Journal of Cosmology and Astroparticle Physics IOP Publishing 2025:10 (2025) 005

Authors:

Nadia Dachlythra, Kevin Wolz, Susanna Azzoni, David Alonso, Adriaan J Duivenvoorden, Alexandre E Adler, Jon E Gudmundsson, Carlo Baccigalupi, Alessandro Carones, Gabriele Coppi, Samuel Day-Weiss, Josquin Errard, Nicholas Galitzki, Martina Gerbino, Remington G Gerras, Carlos Hervias-Caimapo, Selim C Hotinli, Federico Nati, Bruce Partridge, Yoshinori Sueno, Edward J Wollack

Abstract:

The Simons Observatory (SO) Small Aperture Telescopes (SATs) will observe the Cosmic Microwave Background (CMB) temperature and polarization at six frequency bands. Within these bands, the angular response of the telescope (beam) is convolved with the instrument's spectral response (commonly called bandpass) and the signal from the sky, which leads to the band-averaged telescope beam response, which is sampled and digitized. The spectral properties of the band-averaged beam depend on the natural variation of the beam within the band, referred to as beam chromaticity. In this paper, we quantify the impact of the interplay of beam chromaticity and intrinsic frequency scaling from the various components that dominate the polarized sky emission on the tensor-to-scalar ratio, r, and foreground parameters. We do so by employing a parametric power-spectrum-based foreground component separation algorithm, namely BBPower, to which we provide beam-convolved time domain simulations performed with the beamconv software while assuming an idealized version of the SO SAT optics. We find a small, 0.02σ, bias on r, due to beam chromaticity, which seems to mostly impact the dust spatial parameters, causing a maximum 0.77σ bias on the dust B-mode spectra amplitude, Ad , when employing Gaussian foreground simulations. However, we find all parameter biases to be smaller than 1σ at all times, independently of the foreground model. This includes the case where we introduce additional uncertainty on the bandpass shape, which accounts for approximately half of the total allowed gain uncertainty, as estimated in previous work for the SO SATs.

Angular correlation functions of bright Lyman-break galaxies at 3 ≲ z ≲ 5

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1651

Authors:

Isabelle Ye, Philip Bull, Rebecca AA Bowler, Rachel K Cochrane, Nathan J Adams, Matt J Jarvis

Abstract:

Abstract We investigate the clustering of Lyman-break galaxies at redshifts of 3 ≲ z ≲ 5 within the COSMOS field by measuring the angular two-point correlation function. Our robust sample of ~60,000 bright (mUV ≲ 27) Lyman-break galaxies was selected based on spectral energy distribution fitting across 14 photometric bands spanning optical and near-infrared wavelengths. We constrained both the 1- and 2-halo terms at separations up to 300 arcsec, finding an excess in the correlation function at scales corresponding to <20 kpc, consistent with enhancement due to clumps in the same galaxy or interactions on this scale. We then performed Bayesian model fits on the correlation functions to infer the Halo Occupation Distribution parameters, star formation duty cycle, and galaxy bias in three redshift bins. We examined several cases where different combinations of parameters were varied, showing that our data can constrain the slope of the satellite occupation function, which previous studies have fixed. For an MUV-limited sub-sample, we found galaxy bias values of $b_g=3.18^{+0.14}_{-0.14}$ at z ≃ 3, $b_g=3.58^{+0.27}_{-0.29}$ at z ≃ 4, $b_g=4.27^{+0.25}_{-0.26}$ at z ≃ 5. The duty cycle values are $0.62^{+0.25}_{-0.26}$, $0.40^{+0.34}_{-0.22}$, and $0.39^{+0.31}_{-0.20}$,respectively. These results suggest that, as the redshift increases, there is a slight decrease in the host halo masses and a shorter timescale for star formation in bright galaxies, at a fixed rest-frame UV luminosity threshold.

Testing the local supervoid solution to the Hubble tension with direct distance tracers

Monthly Notices of the Royal Astronomical Society 543:2 (2025) 1556-1573

Authors:

R Stiskalek, H Desmond, I Banik

Abstract:

Several observational studies suggest that the local few hundred Mpc around the Local Group is significantly underdense based on source number counts in redshift space across much of the electromagnetic spectrum, particularly in near-infrared galaxy counts. This ‘Keenan–Barger–Cowie (KBC) void’, ‘Local Hole’, or ‘local supervoid’ would have significant ramifications for the Hubble tension by generating outflows that masquerade as an enhanced local expansion rate. We evaluate models for the KBC void capable of resolving the Hubble tension with a background Planck cosmology. We fit these models to direct distances from the Tully–Fisher catalogue of the CosmicFlows-4 compilation using a field-level forward model. Depending on the adopted void density profile, we find the derived velocity fields prefer a void size (Formula presented), which is (Formula presented) per cent of the fiducial size found by Haslbauer et al. based on the KBC luminosity density data. The predicted local Hubble constant is s 72.1+0.9−0.8, 70.4+0.4−0.4, or 70.2+0.5−0.4 kms−1Mpc−1 for an initial underdensity profile that is exponential, Gaussian, or Maxwell–Boltzmann, respectively. The latter two ameliorate the Hubble tension to within 3σ of the four-anchor distance ladder approach of Breuval et al., which gives 73.2 ± 0.9 kms−1Mpc−1. The exponential profile achieves consistency with this measurement at just over 1σ, but it is disfavoured by the Bayesian evidence. The preferred models produce bulk flow curves that disagree with recent estimates from CosmicFlows-4, despite the void models being flexible enough to match such estimates.