MIGHTEE-HI: the radial acceleration relation with resolved stellar mass measurements
Monthly Notices of the Royal Astronomical Society Oxford University Press 541:3 (2025) 2366-2392
Abstract:
The radial acceleration relation (RAR) is a fundamental relation linking baryonic and dark matter in galaxies by relating the observed acceleration derived from dynamics to the one estimated from the baryonic mass. This relation exhibits small scatter, thus providing key constraints for models of galaxy formation and evolution – allowing us to map the distribution of dark matter in galaxies – as well as models of modified dynamics. However, it has only been extensively studied in the very local Universe with largely heterogeneous samples. We present a new measurement of the RAR, utilizing a homogeneous sample of 19 H i-selected galaxies out to . We introduce a novel approach of measuring resolved stellar masses using spectral energy distribution fitting across 10 photometric bands to determine the resolved mass-to-light ratio, which we show is essential for measuring the acceleration due to baryons in the low-acceleration regime. Our results reveal a tight RAR with a low-acceleration power-law slope of , consistent with previous studies. Adopting a spatially varying mass-to-light ratio yields the tightest RAR with an intrinsic scatter of only dex, highlighting the importance of resolved stellar mass measurements in accurately characterizing the gravitational contribution of the baryons in low-mass, gas-rich galaxies. We also find the first tentative evidence for redshift evolution in the acceleration scale, but more data will be required to confirm this. Adopting a more general MOND interpolating function, we find that our results ameliorate the tension between previous RAR analyses, the Solar System quadrupole, and wide-binary test.On the rapid growth of SMBHs in high-z galaxies: the aftermath of Population III.1 stars
(2025)
The ALMA-CRISTAL survey: Gas, dust, and stars in star-forming galaxies when the Universe was ∼1 Gyr old
Astronomy & Astrophysics EDP Sciences 699 (2025) a80
Abstract:
We present the ALMA-CRISTAL survey, an ALMA Cycle 8 Large Program designed to investigate the physical properties of star-forming galaxies at 4 ≲ z ≲ 6 through spatially resolved, multiwavelength observations. This survey targets 19 star-forming main-sequence galaxies selected from the ALPINE survey, using ALMA Band 7 observations to study [C II ] 158 μm line emission and dust continuum, complemented by JWST/NIRCam and HST imaging to map stellar and UV emission. The CRISTAL sample expanded to 39 after including newly detected galaxies in the CRISTAL fields, archival data, and pilot study targets. The resulting dataset provides a detailed view of gas, dust, and stellar structures on kiloparsec scales at the end of the era of reionization. The survey reveals diverse morphologies and kinematics, including rotating disks, merging systems, [C II ] emission tails from potential interactions, and clumpy star formation. Notably, the [C II ] emission in many cases extends beyond the stellar light seen in HST and JWST imaging. Scientific highlights include CRISTAL-10, exhibiting an extreme [C II ] deficit similar to Arp 220, and CRISTAL-13, where feedback from young star-forming clumps likely causes an offset between the stellar clumps and the peaks of [C II ] emission. CRISTAL galaxies exhibit global [C II ]/FIR ratios that decrease with increasing FIR luminosity, similar to trends seen in local galaxies but shifted to higher luminosities, likely due to their higher molecular gas content. CRISTAL galaxies also span a previously unexplored range of global FIR surface brightness at high-redshift, showing that high-redshift galaxies can have elevated [C II ]/FIR ratios. These elevated ratios are likely influenced by factors such as lower-metallicity gas, the presence of significant extraplanar gas, and contributions from shock-excited gas.The ALMA-CRISTAL survey: Extended [CII] emission in an interacting galaxy system at z ∼ 5.5
Astronomy & Astrophysics EDP Sciences 699 (2025) a256
Abstract:
The ALMA [C II] Resolved Ism in STar-forming gALaxies (CRISTAL) survey is a Cycle 8 ALMA Large Program that studies the cold- gas component of high-redshift galaxies. Its subarcsecond-resolution observations are key to distinguishing physical mechanisms that shaped galaxies during cosmic dawn. In this paper, we explore the morphology and kinematics of the cold gas, star-forming, and stellar components in the star-forming main-sequence galaxy CRISTAL-05/HZ3, at z = 5.54. Our analysis includes ALMA observations at a spatial resolution of 0.3″ (∼2 kpc) of the [C II] line. While CRISTAL-05 was previously classified as a single source, our observations reveal that the system is a close interacting pair that is surrounded by an extended component of carbon-enriched gas. This is imprinted in the disturbed elongated [C II] morphology and in the separation of the two components in the position-velocity diagram (∼100 km s −1 ). The central region is composed of two components, named C05-NW and C05-SE, and the former is the dominant component. A significant fraction of [C II] arises beyond the close pair up to 10 kpc, while the regions forming new massive stars and the stellar component seem compact (r [C II] ∼4 × r UV ), as traced by rest-frame UV and optical imaging obtained with the Hubble Space Telescope and the James Webb Space Telescope. Our kinematic model, constructed using the DYSMALpy software, yields a minor contribution of dark matter of C05-NW within a radius of ∼2 × R eff . Finally, we explore the resolved [C II] /far-IR ratios as a proxy for shock-heating produced by this merger. We argue that the extended [C II] emission is mainly caused by the merger of the galaxies, which could not be discerned with lower-resolution observations. Our work emphasizes the need for high-resolution observations to fully characterize the dynamic stages of infant galaxies and the physical mechanisms that drive the metal enrichment of the circumgalactic medium.Galaxy Zoo CEERS: Bar Fractions Up to z ∼ 4.0
The Astrophysical Journal American Astronomical Society 987:1 (2025) 74