On the rapid growth of SMBHs in high-z galaxies: the aftermath of Population III.1 stars

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf2000

Authors:

Mahsa Sanati, Julien Devriendt, Sergio Martin-Alvarez, Adrianne Slyz, Jonathan C Tan

Abstract:

Abstract Despite the vast amount of energy released by active galactic nuclei (AGN), their role in early galaxy formation and in regulating the growth of supermassive black holes (SMBHs) remains poorly understood. Through new high-resolution zoom-in cosmological simulations, we follow the co-evolution of 105 M⊙ black hole seeds with their host dwarf galaxy. We model ionizing feedback from a Pop III.1 progenitor, applicable to a wide range of internally or externally irradiated SMBH formation scenarios. The simulated suite progressively spans physics ranging from no AGN feedback to more complex setups including thermal, kinetic and radiative feedback – explored for both low and enhanced AGN power. Across all our models, we find that black hole seeds efficiently reach masses of ∼107 M⊙ within a ∼1010 M⊙ halo by z = 8. Although they exhibit notably different mass growth histories, these latter seem unimpeded by the presence of AGN feedback. The simulation including radiative feedback is the most distinct, with super-Eddington episodes driving fast and mass-loaded gas outflows (exceeding 2500 km s−1) up to ∼50 kpc, along with minor stellar mass suppression in the host galaxy. Our measurements are in broad agreement with moderate luminosity quasars recently observed by JWST, producing overmassive black holes (SMBH-to-galaxy mass ratios 0.01 − 1), dynamical masses of ∼109.5 M⊙, stellar masses of ∼108.5 M⊙, and high, though short-lived, Eddington fraction accretion rates. These results advocate for a scenario where AGN feedback allows for rapid SMBH growth during the reionisation era, while driving winds that extend deep into the intergalactic medium – shaping host galaxies as well as more distant surroundings.

Detailed theoretical modelling of the kinetic Sunyaev-Zel'dovich stacking power spectrum

(2025)

Authors:

Amy Wayland, David Alonso, Adrien La Posta

The Velocity Field Olympics: Assessing velocity field reconstructions with direct distance tracers

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1960

Authors:

Richard Stiskalek, Harry Desmond, Julien Devriendt, Adrianne Slyz, Guilhem Lavaux, Michael J Hudson, Deaglan J Bartlett, Hélène M Courtois

Abstract:

Abstract The peculiar velocity field of the local Universe provides direct insights into its matter distribution and the underlying theory of gravity, and is essential in cosmological analyses for modelling deviations from the Hubble flow. Numerous methods have been developed to reconstruct the density and velocity fields at z ≲ 0.05, typically constrained by redshift-space galaxy positions or by direct distance tracers such as the Tully–Fisher relation, the fundamental plane, or Type Ia supernovae. We introduce a validation framework to evaluate the accuracy of these reconstructions against catalogues of direct distance tracers. Our framework assesses the goodness-of-fit of each reconstruction using Bayesian evidence, residual redshift discrepancies, velocity scaling, and the need for external bulk flows. Applying this framework to a suite of reconstructions—including those derived from the Bayesian Origin Reconstruction from Galaxies (BORG) algorithm and from linear theory—we find that the non-linear BORG reconstruction consistently outperforms others. We highlight the utility of such a comparative approach for supernova or gravitational wave cosmological studies, where selecting an optimal peculiar velocity model is essential. Additionally, we present calibrated bulk flow curves predicted by the reconstructions and perform a density–velocity cross-correlation using a linear theory reconstruction to constrain the growth factor, yielding S8 = 0.793 ± 0.035. The result is in good agreement with both weak lensing and Planck, but is in strong disagreement with some peculiar velocity studies.

The Velocity Field Olympics: Assessing velocity field reconstructions with direct distance tracers

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1960

Authors:

Richard Stiskalek, Harry Desmond, Julien Devriendt, Adrianne Slyz, Guilhem Lavaux, Michael J Hudson, Deaglan J Bartlett, Hélène M Courtois

Abstract:

Abstract The peculiar velocity field of the local Universe provides direct insights into its matter distribution and the underlying theory of gravity, and is essential in cosmological analyses for modelling deviations from the Hubble flow. Numerous methods have been developed to reconstruct the density and velocity fields at z ≲ 0.05, typically constrained by redshift-space galaxy positions or by direct distance tracers such as the Tully–Fisher relation, the fundamental plane, or Type Ia supernovae. We introduce a validation framework to evaluate the accuracy of these reconstructions against catalogues of direct distance tracers. Our framework assesses the goodness-of-fit of each reconstruction using Bayesian evidence, residual redshift discrepancies, velocity scaling, and the need for external bulk flows. Applying this framework to a suite of reconstructions—including those derived from the Bayesian Origin Reconstruction from Galaxies (BORG) algorithm and from linear theory—we find that the non-linear BORG reconstruction consistently outperforms others. We highlight the utility of such a comparative approach for supernova or gravitational wave cosmological studies, where selecting an optimal peculiar velocity model is essential. Additionally, we present calibrated bulk flow curves predicted by the reconstructions and perform a density–velocity cross-correlation using a linear theory reconstruction to constrain the growth factor, yielding S8 = 0.793 ± 0.035. The result is in good agreement with both weak lensing and Planck, but is in strong disagreement with some peculiar velocity studies.

A 1-per cent-accurate method to include baryonic effects in galaxy–galaxy lensing models

Monthly Notices of the Royal Astronomical Society Oxford University Press 544:4 (2025) 3512-3532

Authors:

Matteo Zennaro, Giovanni Aricò, Carlos García-García, Raúl E Angulo, Lurdes Ondaro-Mallea, Sergio Contreras, Andrina Nicola, Matthieu Schaller, Joop Schaye

Abstract:

The clustering of galaxies and galaxy–galaxy lensing are two of the main observational probes in Stage-IV large-scale structure surveys, such as Euclid and LSST. Unfortunately, the complicated relationship between galaxies and matter greatly limits the exploitation of this data. Sophisticated theoretical galaxy bias models–such as the hybrid Lagrangian bias expansion – allow describing galaxy clustering down to scales as small as . However, the galaxy–matter cross-power spectra are already affected by baryons on these scales, directly impacting the modelling of galaxy–galaxy lensing. In this work, we propose a way to extend state-of-the-art models of the galaxy–matter cross-power spectrum (currently only accounting for dark matter) by including a baryonic correction term inferred from the matter component [the suppression ], so that . We use the FLAMINGO hydrodynamical simulations to measure the effect of baryons on the galaxy–matter cross-power spectrum and to assess the performance of our model. Specifically, we perform a Bayesian analysis of synthetic data, implementing a model based on BACCO’s hybrid Lagrangian bias expansion (for the non-linear galaxy bias) and Baryon Correction Model (for the baryon suppression of the matter power spectrum). Ignoring the effect of baryons on the galaxy–matter cross-power spectrum leads to a biased inference of the galaxy bias parameters, while ignoring baryons in both the galaxy–matter and matter–matter power spectra leads to a biased inference of both the galaxy bias and cosmological parameters. In contrast, our method is 1 per cent accurate compared to all physics variations in FLAMINGO and on all scales described by hybrid perturbative models (). Moreover, our model leads to inferred bias and cosmological parameters compatible within 1 with their reference values. We anticipate that our method will be a promising candidate for analysing forthcoming Stage-IV survey data.