Euclid: Early Release Observations – NISP-only sources and the search for luminous z = 6–8 galaxies

Astronomy & Astrophysics EDP Sciences 697 (2025) a16

Authors:

JR Weaver, S Taamoli, CJR McPartland, L Zalesky, N Allen, S Toft, DB Sanders, H Atek, RAA Bowler, D Stern, CJ Conselice, B Mobasher, I Szapudi, PRM Eisenhardt, G Murphree, I Valdes, K Ito, S Belladitta, PA Oesch, S Serjeant, DJ Mortlock, NA Hatch, M Kluge, B Milvang-Jensen, G Rodighiero, E Bañados, JM Diego, R Gavazzi, G Congedo, M Shuntov, H Dole, P-F Rocci, T Saifollahi, M Miluzio, M Ezziati, ACN Hughes, J-C Cuillandre, R Laureijs, S Paltani, M Schirmer, C Stone, N Aghanim, B Altieri, A Amara, S Andreon, N Auricchio, M Baldi, A Balestra, S Bardelli, R Bender, C Bodendorf, D Bonino, E Branchini, M Brescia, J Brinchmann, S Camera, V Capobianco, C Carbone, VF Cardone, J Carretero, S Casas, FJ Castander, M Castellano, S Cavuoti, A Cimatti, L Conversi, Y Copin, L Corcione, F Courbin, HM Courtois, A Da Silva, H Degaudenzi, AM Di Giorgio, J Dinis, M Douspis, F Dubath, X Dupac, A Ealet, M Farina, S Farrens, S Ferriol, S Fotopoulou, M Frailis, E Franceschi, P Franzetti, S Galeotta, W Gillard, B Gillis, C Giocoli, P Gómez-Alvarez, A Grazian, F Grupp, L Guzzo, SVH Haugan, J Hoar, H Hoekstra, W Holmes, I Hook, F Hormuth, A Hornstrup, P Hudelot, K Jahnke, M Jhabvala, E Keihänen, S Kermiche, A Kiessling, T Kitching, B Kubik, M Kümmel, M Kunz, H Kurki-Suonio, O Lahav, D Le Mignant, S Ligori, PB Lilje, V Lindholm, I Lloro, D Maino, E Maiorano, O Mansutti, O Marggraf, K Markovic, N Martinet, F Marulli, R Massey, DC Masters, S Maurogordato, HJ McCracken, E Medinaceli, S Mei, M Melchior, Y Mellier, M Meneghetti, E Merlin, G Meylan, JJ Mohr, M Moresco, L Moscardini, R Nakajima, RC Nichol, S-M Niemi, C Padilla, F Pasian, K Pedersen, WJ Percival, V Pettorino, S Pires, G Polenta, M Poncet, LA Popa, L Pozzetti, F Raison, A Renzi, J Rhodes, G Riccio, E Romelli, M Roncarelli, E Rossetti, R Saglia, D Sapone, P Schneider, T Schrabback, A Secroun, G Seidel, S Serrano, C Sirignano, G Sirri, L Stanco, P Tallada-Crespí, AN Taylor, HI Teplitz, I Tereno, R Toledo-Moreo, I Tutusaus, L Valenziano, T Vassallo, A Veropalumbo, Y Wang, J Weller, E Zucca, C Burigana, G Castignani, Z Sakr, V Scottez, M Viel, P Simon, J Martín-Fleitas, D Scott

Euclid: Early Release Observations – A preview of the Euclid era through a galaxy cluster magnifying lens

Astronomy & Astrophysics EDP Sciences 697 (2025) a15

Authors:

H Atek, R Gavazzi, JR Weaver, JM Diego, T Schrabback, NA Hatch, N Aghanim, H Dole, WG Hartley, S Taamoli, G Congedo, Y Jimenez-Teja, J-C Cuillandre, E Bañados, S Belladitta, RAA Bowler, M Franco, M Jauzac, G Mahler, J Richard, P-F Rocci, S Serjeant, S Toft, D Abriola, P Bergamini, A Biviano, P Dimauro, M Ezziati, JB Golden-Marx, C Grillo, ACN Hughes, Y Kang, J-P Kneib, M Lombardi, GA Mamon, CJR McPartland, M Meneghetti, H Miyatake, M Montes, DJ Mortlock, PA Oesch, N Okabe, P Rosati, AN Taylor, F Tarsitano, J Weller, M Kluge, R Laureijs, S Paltani, T Saifollahi, M Schirmer, C Stone, A Mora, B Altieri, A Amara, S Andreon, N Auricchio, M Baldi, A Balestra, S Bardelli, A Basset, R Bender, C Bodendorf, D Bonino, E Branchini, M Brescia, J Brinchmann, S Camera, GP Candini, V Capobianco, C Carbone, VF Cardone, J Carretero, S Casas, FJ Castander, M Castellano, S Cavuoti, A Cimatti, CJ Conselice, L Conversi, Y Copin, L Corcione, F Courbin, HM Courtois, A Da Silva, H Degaudenzi, AM Di Giorgio, J Dinis, M Douspis, F Dubath, X Dupac, S Dusini, A Ealet, M Farina, S Farrens, S Ferriol, S Fotopoulou, M Frailis, E Franceschi, S Galeotta, W Gillard, B Gillis, C Giocoli, P Gómez-Alvarez, A Grazian, F Grupp, L Guzzo, M Hailey, SVH Haugan, J Hoar, H Hoekstra, MS Holliman, W Holmes, I Hook, F Hormuth, A Hornstrup, P Hudelot, K Jahnke, M Jhabvala, E Keihänen, S Kermiche, A Kiessling, T Kitching, R Kohley, B Kubik, K Kuijken, M Kümmel, M Kunz, H Kurki-Suonio, O Lahav, D Le Mignant, S Ligori, PB Lilje, V Lindholm, I Lloro, D Maino, E Maiorano, O Mansutti, O Marggraf, K Markovic, N Martinet, F Marulli, R Massey, S Maurogordato, HJ McCracken, S Mei, Y Mellier, E Merlin, G Meylan, M Moresco, L Moscardini, R Nakajima, RC Nichol, S-M Niemi, C Padilla, K Paech, F Pasian, JA Peacock, K Pedersen, WJ Percival, V Pettorino, S Pires, G Polenta, M Poncet, LA Popa, L Pozzetti, F Raison, A Renzi, J Rhodes, G Riccio, E Romelli, M Roncarelli, R Saglia, D Sapone, P Schneider, A Secroun, G Seidel, S Serrano, C Sirignano, G Sirri, J Skottfelt, L Stanco, P Tallada-Crespí, HI Teplitz, I Tereno, R Toledo-Moreo, I Tutusaus, L Valenziano, T Vassallo, G Verdoes Kleijn, A Veropalumbo, Y Wang, E Zucca, C Baccigalupi, C Burigana, G Castignani, Z Sakr, V Scottez, M Viel, P Simon, D Stern, J Martín-Fleitas, D Scott

The kinematic contribution to the cosmic number count dipole

Astronomy & Astrophysics EDP Sciences 697 (2025) a112

Authors:

JD Wagenveld, S von Hausegger, H-R Klöckner, DJ Schwarz

The diversity of rotation curves of galaxies in the NewHorizon cosmological simulation

Monthly Notices of the Royal Astronomical Society Oxford University Press 539:4 (2025) 3797-3807

Authors:

RA Jackson, JF Navarro, IME Santos-Santos, S Kaviraj, SK Yi, S Peirani, Y Dubois, G Martin, JEG Devriendt, A Slyz, C Pichon, M Volonteri, T Kimm, K Kraljic

Abstract:

We use the cosmological hydrodynamical simulation NewHorizon to study the effects of the baryonic component on the inner mass profile of dark matter haloes of isolated galaxies (). Dark matter deficits (‘cores’) develop only in galaxies in a narrow range of stellar mass, . The lower stellar mass limit arises because a minimum amount of star formation is required to drive the baryonic outflows that redistribute dark matter and create a core. The upper limit roughly coincides with the total amount of dark matter initially contained within the innermost 2 kpc (), which roughly coincides with the stellar half-mass radius of these dwarfs. This enclosed mass is quite insensitive to the total virial mass of the system. The same upper limit applies to other simulations, like NIHAO and EAGLE-CHT10, despite their rather different galaxy formation efficiencies. This suggests that it is the galaxy total stellar mass that determines when a core is formed, and not the galaxy-to-dark halo mass ratio, as argued in earlier work. This is consistent with a back-of-the-envelope estimate for a SN-induced rate of orbital diffusion. Although NewHorizon dwarfs reproduce the observed diversity of rotation curves better than other simulations, there are significant differences in the gravitational importance of baryons in the inner regions of dwarfs compared to observations. These differences prevent us from concluding that cosmological simulations are currently fully able to account for the observed diversity of rotation curve shapes.

Measurement of the power spectrum turnover scale from the cross-correlation between CMB lensing and Quaia

The Open Journal of Astrophysics Maynooth University 8 (2025)

Authors:

David Alonso, Oleksandr Hetmantsev, Giulio Fabbian, Anze Slosar, Kate Storey-Fisher

Abstract:

<jats:p>We use the projected clustering of quasars in the Gaia-unWISE quasar catalog, Quaia, and its cross-correlation with CMB lensing data from Planck, to measure the large-scale turnover of the matter power spectrum, associated with the size of the horizon at the epoch of matter-radiation equality. The turnover is detected with a significance of between <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mn>2.3</mml:mn></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>3.1</mml:mn><mml:mi>σ</mml:mi></mml:mrow></mml:math>, depending on the method used to quantify it. From this measurement, the equality scale is determined at the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mo>∼</mml:mo><mml:mn>20</mml:mn><mml:mi>%</mml:mi></mml:mrow></mml:math> level. Using the turnover scale as a standard ruler alone (suppressing information from the large-scale curvature of the power spectrum), in combination with supernova data through an inverse distance ladder approach, we measure the current expansion rate to be . The addition of information coming from the power spectrum curvature approximately halves the standard ruler uncertainty. Our measurement in combination with calibrated supernovae from Pantheon <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo>+</mml:mo></mml:math> and SH0ES constrains the CMB temperature to be , independently of CMB data. Alternatively, assuming the value of from COBE-FIRAS, we can constrain the effective number of relativistic species in the early Universe to be .</jats:p>