Impact of Cosmic Ray-driven Outflows on Ly α Emission in Cosmological Simulations

The Astrophysical Journal American Astronomical Society 992:1 (2025) 67

Authors:

Taysun Kimm, Julien Devriendt, Francisco Rodríguez Montero, Adrianne Slyz, Jérémy Blaizot, Harley Katz, Beomchan Koh, Hyunmi Song

Abstract:

Cosmic ray (CR) feedback has been proposed as a powerful mechanism for driving warm gas outflows in galaxies. We use cosmological magnetohydrodynamic simulations to investigate the impact of CR feedback on neutral hydrogen (H i) in a 1011 M⊙ dark matter halo at 2 < z < 4. To this end, we postprocess the simulations with ionizing radiative transfer and perform Monte Carlo Lyman-α (Lyα) transfer calculations. CR feedback reduces H i column densities around young stars, thereby allowing more Lyα photons to escape and consequently offering a better match to the Lyα luminosities of observed Lyα emitters. Although galaxies with CR-driven outflows have more extended H i in the circumgalactic medium, two Lyα line properties sensitive to optical depth and gas kinematic—the location of the red peak relative to the Lyα line center in velocity space (vred) and relative strength of the blue-to-red peaks (B/R)—cannot distinguish between the CR-driven and non-CR simulations. This is because Lyα photons propagate preferentially along low H i density channels created by the ionizing radiation, thereby limiting the scattering with volume-filling H i. In contrast, the observed low flux ratios between the valley and peak and the surface brightness profiles are better reproduced in the model with CR-driven outflows because the Lyα photons interact more before escaping, rather than being destroyed by dust as is the case in the non-CR simulation. We discuss the potential cause of the paucity of sightlines in simulations that exhibit prominent red peaks and large vred, which may require the presence of more volume-filling H i.

MEGATRON: Disentangling Physical Processes and Observational Bias in the Multi-Phase ISM of High-Redshift Galaxies

(2025)

Authors:

Nicholas Choustikov, Harley Katz, Alex J Cameron, Aayush Saxena, Julien Devriendt, Adrianne Slyz, Martin P Rey, Corentin Cadiou, Jeremy Blaizot, Taysun Kimm, Isaac Laseter, Kosei Matsumoto, Joki Rosdahl

MEGATRON: Reproducing the Diversity of High-Redshift Galaxy Spectra with Cosmological Radiation Hydrodynamics Simulations

(2025)

Authors:

Harley Katz, Martin P Rey, Corentin Cadiou, Oscar Agertz, Jeremy Blaizot, Alex J Cameron, Nicholas Choustikov, Julien Devriendt, Uliana Hauk, Gareth C Jones, Taysun Kimm, Isaac Laseter, Sergio Martin-Alvarez, Kosei Matsumoto, Autumn Pearce, Francisco Rodríguez Montero, Joki Rosdahl, Mahsa Sanati, Aayush Saxena, Adrianne Slyz, Richard Stiskalek, Anatole Storck, Oscar Veenema, Wonjae Yee

MEGATRON: how the first stars create an iron metallicity plateau in the smallest dwarf galaxies

(2025)

Authors:

Martin P Rey, Harley Katz, Corentin Cadiou, Mahsa Sanati, Oscar Agertz, Jeremy Blaizot, Alex J Cameron, Nicholas Choustikov, Julien Devriendt, Uliana Hauk, Alexander P Ji, Gareth C Jones, Taysun Kimm, Isaac Laseter, Sergio Martin-Alvarez, Kosei Matsumoto, Autumn Pearce, Yves Revaz, Francisco Rodriguez Montero, Joki Rosdahl, Aayush Saxena, Adrianne Slyz, Richard Stiskalek, Anatole Storck, Oscar Veenema, Wonjae Yee

Robust cosmic shear with small-scale nulling

Journal of Cosmology and Astroparticle Physics IOP Publishing 2025:10 (2025) 017

Authors:

Giulia Piccirilli, Matteo Zennaro, Carlos García-García, David Alonso

Abstract:

Standard cosmological weak lensing analyses using cosmic shear are inevitably sensitive to small-scale, non-linear clustering from low-redshift structures. The need to adequately model the clustering of matter on this non-linear regime, accounting for both gravitational and baryonic effects, adds significant uncertainty to weak lensing studies, particularly in the context of near-future Stage-IV datasets. In this paper, inspired by previous work on so-called “nulling” techniques, we present a general method that selects the linear combinations of a given tomographic cosmic shear dataset that are least sensitive to small-scale non-linearities, by essentially suppressing the contribution from low-redshift structures. We apply this method to the latest public cosmic shear data from the Dark Energy Survey, DES-Y3, that corresponds to 3 years of observation, and show: a) that a large fraction of the signal is dominated by the single mode that is most affected by non-linear scales, and b) that removing this mode leads to a ∼ 1σ upwards shift in the preferred value of S 8 ≡ σ 8√(ΩM/0.3), alleviating the tension with current CMB data. However, the removal of the most contaminated mode also results in a significant increase in the statistical uncertainties. Taking this into account, we find this shift to be compatible with a random fluctuation caused by removing this most-contaminated mode at the ∼ 1.4σ level. We also show that this technique may be used by future Stage-IV surveys to mitigate the sensitivity of the final constraints to baryonic effects, trading precision for robustness.