Response of winter climate and extreme weather to projected Arctic sea-ice loss in very large-ensemble climate model simulations

npj Climate and Atmospheric Science Springer Nature 7:1 (2024) 20

Authors:

Kunhui Ye, Tim Woollings, Sarah N Sparrow, Peter AG Watson, James A Screen

Abstract:

Very large (~2000 members) initial-condition ensemble simulations have been performed to advance understanding of mean climate and extreme weather responses to projected Arctic sea-ice loss under 2 °C global warming above preindustrial levels. These simulations better sample internal atmospheric variability and extremes for each model compared to those from the Polar Amplification Model Intercomparison Project (PAMIP). The mean climate response is mostly consistent with that from the PAMIP multi-model ensemble, including tropospheric warming, reduced midlatitude westerlies and storm track activity, an equatorward shift of the eddy-driven jet and increased mid-to-high latitude blocking. Two resolutions of the same model exhibit significant differences in the stratospheric circulation response; however, these differences only weakly modulate the tropospheric response. The response of temperature and precipitation extremes largely follows the seasonal-mean response. Sub-sampling confirms that large ensembles (e.g. ≥400) are needed to robustly estimate the seasonal-mean large-scale circulation response, and very large ensembles (e.g. ≥1000) for regional climate and extremes.

Modelling the day–night temperature variations of ultra-hot Jupiters: confronting non-grey general circulation models and observations

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 528:1 (2024) 1016-1036

Authors:

Xianyu Tan, Thaddeus D Komacek, Natasha E Batalha, Drake Deming, Roxana Lupu, Vivien Parmentier, Raymond T Pierrehumbert

Characterizing volcanic ash density and its implications on settling dynamics

Journal of Geophysical Research: Atmospheres American Geophysical Union 129:2 (2024) e2023JD039903

Authors:

Woon Sing Lau, Roy Grainger, Isabelle Taylor

Abstract:

Volcanic ash clouds are carefully monitored as they present a significant hazard to humans and aircraft. The primary tool for forecasting the transport of ash from a volcano is dispersion modelling. These models make a number of assumptions about the size, sphericity and density of the ash particles. Few studies have measured the density of ash particles or explored the impact that the assumption of ash density might have on the settling dynamics of ash particles. In this paper, the raw apparent density of 23 samples taken from 15 volcanoes are measured with gas pycnometry, and a negative linear relationship is found between the density and the silica content. For the basaltic ash samples, densities were measured for different particle sizes, showing that the density is approximately constant for particles smaller than 100 µm, beyond which it decreases with size. While this supports the current dispersion model used by the London Volcanic Ash Advisory Centre (VAAC), where the density is held at a constant (2.3 g cm-3), inputting the measured densities into a numerical simulation of settling velocity reveals a primary effect from the silica content changing this constant. The VAAC density overestimates ash removal times by up to 18 %. These density variations, including those varying with size beyond 100 µm, also impact short-range particle-size distribution (PSD) measurements and satellite retrievals of ash.

Modeling Noncondensing Compositional Convection for Applications to Super-Earth and Sub-Neptune Atmospheres

The Astrophysical Journal American Astronomical Society 961:1 (2024) 35

Authors:

Namrah Habib, Raymond T Pierrehumbert

Quasi-Biennial Oscillation

Chapter in Atmospheric Oscillations: Sources of Subseasonal-to-Seasonal Variability and Predictability, (2024) 253-275

Authors:

Y Wang, J Rao, Z Ju, SM Osprey

Abstract:

The Quasi-Biennial Oscillation (QBO) is one of the most cyclic phenomena in the atmosphere except for the annular and diurnal cycles, which provide the predictability source for subseasonal-to-seasonal forecasts on the globe. The QBO is generated by the interaction between the background circulation and the equatorial waves, which cover a wide spectrum consisting of those that are eastward-and westward-propagating. The QBO can affect the climate in both the Northern and Southern Hemispheres through at least three dynamic pathways, including the stratospheric polar vortex pathway, the subtropical downward-arching zonal wind pathway, and the tropical convection pathway. The impact of the QBO on the extratropics is projected to strengthen in future scenario experiments, although the maximum QBO wind magnitude gradually decreased in recent decades. As a newly emerging feature, the QBO disruption during the westerly phase is mainly caused by the extremely active Rossby waves from the extratropics. The QBO disruptions are likely to increase in a warmer climate background.