Seasonal prediction of UK mean and extreme winds

Quarterly Journal of the Royal Meteorological Society Wiley 149:757 (2023) 3477-3489

Authors:

Julia F Lockwood, Nicky Stringer, Katie R Hodge, Philip E Bett, Jeff Knight, Doug Smith, Adam A Scaife, Matthew Patterson, Nick Dunstone, Hazel E Thornton

The Runaway Greenhouse Effect on Hycean Worlds

The Astrophysical Journal American Astronomical Society 953:2 (2023) 168

Authors:

Hamish Innes, Shang-Min Tsai, Raymond T Pierrehumbert

Measurements of the mean structure, temperature, and circulation of the MLT

Bulletin of the American Astronomical Society American Astronomical Society 55:3 (2023) 371

Authors:

Anne K Smith, Colby Brabec, Jorge Chau, Xinzhao Chu, Bernd Funke, V Lynn Harvey, McArthur Jones Jr., Aimee Merkel, Steven Miller, Martin Mlynczak, Scott Osprey, Doug Rowland, Jia Yue

Abstract:

The mean state of the MLT (mesosphere – lower thermosphere) is key in the exchange of energy, momentum, and trace species between the middle and upper atmosphere. Knowledge of the mean state wind and temperature is endangered by an upcoming gap in measurements. Needed actions include continued operation of existing space-borne instruments and rapid development of replacement options.

Understanding the mechanisms for tropical surface impacts of the quasi‐biennial oscillation (QBO)

Journal of Geophysical Research: Atmospheres Wiley 128:15 (2023) e2023JD038474

Authors:

Jorge L García‐Franco, Lesley J Gray, Scott Osprey, Aleena M Jaison, Robin Chadwick, Jonathan Lin

Abstract:

The impact of the quasi-biennial oscillation (QBO) on tropical convection and precipitation is investigated through nudging experiments using the UK Met Office Hadley Center Unified Model. The model control simulations show robust links between the internally generated QBO and tropical precipitation and circulation. The model zonal wind in the tropical stratosphere was nudged above 90 hPa in atmosphere-only and coupled ocean-atmosphere configurations. The convection and precipitation in the atmosphere-only simulations do not differ between the experiments with and without nudging, which may indicate that SST-convection coupling is needed for any QBO influence on the tropical lower troposphere and surface. In the coupled experiments, the precipitation and sea-surface temperature relationships with the QBO phase disappear when nudging is applied. Imposing a realistic QBO-driven static stability anomaly in the upper-troposphere lower-stratosphere is not sufficient to simulate tropical surface impacts. The nudging reduced the influence of the lower troposphere on the upper branch of the Walker circulation, irrespective of the QBO, indicating that the upper tropospheric zonal circulation has been decoupled from the surface by the nudging. These results suggest that grid-point nudging mutes relevant feedback processes occurring at the tropopause level, including high cloud radiative effects and wave mean flow interactions, which may play a key role in stratospheric-tropospheric coupling.

A Call to Action: Developing the Capability to Explain and Predict Earth System Change

Bulletin of the American Meteorological Society American Meteorological Society 104:7 (2023) 501-504

Authors:

Kirsten L Findell, Rowan Sutton, Nico Caltabiano, Anca Brookshaw, Patrick Heimbach, Masahide Kimoto, Scott Osprey, Doug Smith, James S Risbey, Zhuo Wang, Lijing Cheng, Leandro B Diaz, Markus G Donat, Michael Ek, June-Yi Lee, Shoshiro Minobe, Matilde Rusticucci, Frederic Vitart, Lin Wang