Understanding the mechanisms for tropical surface impacts of the quasi‐biennial oscillation (QBO)
Journal of Geophysical Research: Atmospheres Wiley 128:15 (2023) e2023JD038474
Abstract:
The impact of the quasi-biennial oscillation (QBO) on tropical convection and precipitation is investigated through nudging experiments using the UK Met Office Hadley Center Unified Model. The model control simulations show robust links between the internally generated QBO and tropical precipitation and circulation. The model zonal wind in the tropical stratosphere was nudged above 90 hPa in atmosphere-only and coupled ocean-atmosphere configurations. The convection and precipitation in the atmosphere-only simulations do not differ between the experiments with and without nudging, which may indicate that SST-convection coupling is needed for any QBO influence on the tropical lower troposphere and surface. In the coupled experiments, the precipitation and sea-surface temperature relationships with the QBO phase disappear when nudging is applied. Imposing a realistic QBO-driven static stability anomaly in the upper-troposphere lower-stratosphere is not sufficient to simulate tropical surface impacts. The nudging reduced the influence of the lower troposphere on the upper branch of the Walker circulation, irrespective of the QBO, indicating that the upper tropospheric zonal circulation has been decoupled from the surface by the nudging. These results suggest that grid-point nudging mutes relevant feedback processes occurring at the tropopause level, including high cloud radiative effects and wave mean flow interactions, which may play a key role in stratospheric-tropospheric coupling.
North-West Europe hottest days are warming twice as fast as mean summer days
Geophysical Research Letters American Geophysical Union 50:10 (2023) e2023GL102757
Abstract:
Europe has seen a rapid increase in the frequency and intensity of hot extremes in recent decades. In this study it is shown, using ERA5 reanalysis data 1960–2021, that the hottest summer days in North-West Europe are warming approximately twice as fast as mean summer days. Moreover, this pattern stands out as relatively unusual across the Northern Hemisphere. It is also shown that comprehensive climate models fail to capture this difference in trends. A hypothesis is suggested to explain the differential rate of warming between the mean and hottest days, namely that the hottest days are often linked to warm advection from Iberia and North Africa, areas that are warming faster than North-West Europe. This hypothesis can account for about 25% of the difference between ERA5 and a climate model ensemble and hence further research is needed to understand the drivers of the differing trends in mean and extreme temperature.European winter climate response to projected Arctic sea-ice loss strongly shaped by change in the North Atlantic jet
Copernicus Publications (2023)
Impacts of Atlantic Multi-decadal Variability on the mid-latitude atmosphere
Copernicus Publications (2023)
The CAIRT earth explorer 11 mission: a way towards global gravity wave momentum budgets
Copernicus Publications (2023)