Methane precipitation in ice giant atmospheres
Astronomy & Astrophysics EDP Sciences (2025)
Abstract:
<jats:p>Voyager-2 radio occultation measurements have revealed changes in the atmospheric refractivity within a 2-4 km layer near the 1.2-bar level in Uranus and the 1.6-bar level in Neptune. These changes were attributed to the presence of a methane cloud, consistent with the observation that methane concentration decreases with altitude above these levels, closely following the saturation vapor pressure. However, no clear spectral signatures of such a cloud have been detected thus far in the spectra acquired from both planets. We examine methane cloud properties in the atmospheres of the ice giants, including vertical ice distribution, droplet radius, precipitation rates, timescales, and total opacity, employing microphysical simulations under different scenarios. We used a one-dimensional (1D) cloud microphysical model to simulate the formation of methane clouds in the ice giants. The simulations include the processes of nucleation, condensation, coagulation, evaporation, and precipitation, with vertical mixing simulated using an eddy-diffusion profile (K_eddy). Our simulations show cloud bases close to 1.24 bars in Uranus and 1.64 bars in Neptune, with droplets up to 100 μm causing high settling velocities and precipitation rates (∼370 mm per Earth year). The high settling velocities limit the total cloud opacity, yielding values at 0.8 μm of ∼0.19 for Uranus and ∼0.35 for Neptune, using K_ eddy = 0.5 m^2 s^-1 and a deep methane mole fraction (μ_CH_4) of 0.04. In addition, lower K_ eddy or μ_CH_4 values result in smaller opacities. Methane supersaturation is promptly removed by condensation, controlling the decline in μ_CH_4 with altitude in the troposphere. However, the high settling velocities prevent the formation of a permanent thick cloud. Stratospheric hazes made of ethane or acetylene ice are expected to evaporate completely before reaching the methane condensation level. Since hazes are required for methane heterogeneous nucleation, this suggests either a change in the solid phase properties of the haze particles, inhibiting evaporation, or the presence of photochemical hazes.</jats:p>A Comprehensive Analysis of Spitzer 4.5 μm Phase Curves of Hot Jupiters
The Astronomical Journal American Astronomical Society 169:1 (2025) 32
CRIRES+ and ESPRESSO Reveal an Atmosphere Enriched in Volatiles Relative to Refractories on the Ultrahot Jupiter WASP-121b
The Astronomical Journal American Astronomical Society 169:1 (2025) 10
Clouds and Ammonia in the Atmospheres of Jupiter and Saturn Determined From a Band‐Depth Analysis of VLT/MUSE Observations
Journal of Geophysical Research E: Planets American Geophysical Union 130:1 (2025)
Limits on the atmospheric metallicity and aerosols of the sub-Neptune GJ 3090 b from high-resolution CRIRES+ spectroscopy
Monthly Notices of the Royal Astronomical Society, Volume 538, Issue 4, pp.3263-3283
Abstract:
The sub-Neptune planets have no solar system analogues, and their low bulk densities suggest thick atmospheres containing degenerate quantities of volatiles and H/He, surrounding cores of unknown sizes. Measurements of their atmospheric composition can help break these degeneracies, but many previous studies at low spectral resolution have largely been hindered by clouds or hazes, returning muted spectra. Here, we present the first comprehensive study of a short-period sub-Neptune using ground-based, high-resolution spectroscopy, which is sensitive to the cores of spectral lines that can extend above potential high altitude aerosol layers. We observe four CRIRES+ K-band transits of the warm sub-Neptune GJ 3090 b (T eq = 693 ± 18 K) which orbits an M2V host star. Despite the high quality data and sensitivity to CH4, H2O, NH3, and H2S, we detect no molecular species. Injection-recovery tests are consistent with two degenerate scenarios. First, GJ 3090 b may host a highly metal-enriched atmosphere with > 150 Z ⊙ and mean molecular weight > 7.1 g mol −1, representing a volatile dominated envelope with a H/He mass fraction xH/He<33 per cent, and an unconstrained aerosol layer. Second, the data are consistent with a high altitude cloud or haze layer at pressures < 3.3 ×10−5 bar, for any metallicity. GJ 3090 b joins the growing evidence to suggest that high metallicity atmospheres and high altitude aerosol layers are common within the warm (500 < Teq < 800 K) sub-Neptune population. We discuss the observational challenges posed by the M-dwarf host star, and suggest observing strategies for transmission spectroscopy of challenging targets around M-dwarfs for existing and ELT instrumentation.