A mini-chemical scheme with net reactions for 3D general circulation models. I. Thermochemical kinetics

Astronomy and Astrophysics EDP Sciences 664 (2022) A82

Authors:

S-M Tsai, Ekh Lee, R Pierrehumbert

Abstract:

Context. Growing evidence has indicated that the global composition distribution plays an indisputable role in interpreting observational data. Three-dimensional general circulation models (GCMs) with a reliable treatment of chemistry and clouds are particularly crucial in preparing for upcoming observations. In attempts to achieve 3D chemistry-climate modeling, the challenge mainly lies in the expensive computing power required for treating a large number of chemical species and reactions.
Aims. Motivated by the need for a robust and computationally efficient chemical scheme, we devise a mini-chemical network with a minimal number of species and reactions for H2-dominated atmospheres.
Methods. We apply a novel technique to simplify the chemical network from a full kinetics model, VULCAN, by replacing a large number of intermediate reactions with net reactions. The number of chemical species is cut down from 67 to 12, with the major species of thermal and observational importance retained, including H2O, CH4, CO, CO2, C2H2, NH3, and HCN. The size of the total reactions is also greatly reduced, from ~800 to 20. We validated the mini-chemical scheme by verifying the temporal evolution and benchmarking the predicted compositions in four exoplanet atmospheres (GJ 1214b, GJ 436b, HD 189733b, and HD 209458b) against the full kinetics of VULCAN.
Results. The mini-network reproduces the chemical timescales and composition distributions of the full kinetics well within an order of magnitude for the major species in the pressure range of 1 bar–0.1 mbar across various metallicities and carbon-to-oxygen (C/O) ratios.
Conclusions. We have developed and validated a mini-chemical scheme using net reactions to significantly simplify a large chemical network. The small scale of the mini-chemical scheme permits simple use and fast computation, which is optimal for implementation in a 3D GCM or a retrieval framework. We focus on the thermochemical kinetics of net reactions in this paper and address photochemistry in a follow-up paper.

Three-dimensional structure of thermal waves in Venus’ mesosphere from ground-based observations

Icarus Elsevier 387 (2022) 115187

Authors:

Rohini S Giles, Thomas K Greathouse, Patrick Irwin, Thérèse Encrenaz, Amanda Brecht

Abstract:

High spectral resolution observations of Venus were obtained with the TEXES instrument at NASA’s Infrared Telescope Facility. These observations focus on a CO2 absorption feature at 791.4 cm-1 as the shape of this absorption feature can be used to retrieve the vertical temperature profile in Venus’ mesosphere. By scan-mapping the planet, we are able to build up three-dimensional temperature maps of Venus’ atmosphere, covering one Earth-facing hemisphere and an altitude range of 60–83 km. A temperature map from February 12, 2019 clearly shows the three-dimensional structure of a planetary-scale thermal wave. This wave pattern appears strongest in the mid-latitudes of Venus, has a zonal wavenumber of 2–4 and the wave fronts tilt eastward with altitude at an angle of 8–15 degrees per km. This is consistent with a thermal tide propagating upwards from Venus’ upper cloud decks. Ground-based observations provide the opportunity to study Venus’ temperature structure on an ongoing basis.

Prevalence of short-lived radioactive isotopes across exoplanetary systems inferred from polluted white dwarfs

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 515:1 (2022) 395-406

Authors:

Alfred Curry, Amy Bonsor, Tim Lichtenberg, Oliver Shorttle

Variability in the Uranian atmosphere: Uranus' north polar hood

Copernicus Publications (2022)

Authors:

Arjuna James, Patrick Irwin, Jack Dobinson, Mike Wong, Amy Simon, Erich Karkoschka, Martin Tomasko, Lawrence Sromovsky

Water observed in the atmosphere of τ Boötis Ab with CARMENES/CAHA

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 514:3 (2022) stac1512-

Authors:

Rebecca K Webb, Siddharth Gandhi, Matteo Brogi, Jayne L Birkby, Ernst de Mooij, Ignas Snellen, Yapeng Zhang