BOWIE-ALIGN: how formation and migration histories of giant planets impact atmospheric compositions
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 535:1 (2024) 171-186
BOWIE-ALIGN: A JWST comparative survey of aligned versus misaligned hot Jupiters to test the dependence of atmospheric composition on migration history
RAS Techniques and Instruments Oxford University Press 3:1 (2024) 691-704
Abstract:
A primary objective of exoplanet atmosphere characterization is to learn about planet formation and evolution, however, this is challenged by degeneracies. To determine whether differences in atmospheric composition can be reliably traced to differences in evolution, we are undertaking a transmission spectroscopy survey with JWST to compare the compositions of a sample of hot Jupiters that have different orbital alignments around F stars above the Kraft break. Under the assumption that aligned planets migrate through the inner disc, while misaligned planets migrate after disc dispersal, the act of migrating through the inner disc should cause a measurable difference in the C/O between aligned and misaligned planets. We expect the amplitude and sign of this difference to depend on the amount of planetesimal accretion and whether silicates accreted from the inner disc release their oxygen. Here, we identify all known exoplanets that are suitable for testing this hypothesis, describe our JWST survey, and use noise simulations and atmospheric retrievals to estimate our survey’s sensitivity. With the selected sample of four aligned and four misaligned hot Jupiters, we will be sensitive to the predicted differences in C/O between aligned and misaligned hot Jupiters for a wide range of model scenarios.A Detailed Study of Jupiter’s Great Red Spot over a 90-day Oscillation Cycle
The Planetary Science Journal IOP Publishing 5:10 (2024) 223
Abstract:
Jupiter’s Great Red Spot (GRS) is known to exhibit oscillations in its westward drift with a 90-day period. The GRS was observed with the Hubble Space Telescope on eight dates over a single oscillation cycle in 2023 December to 2024 March to search for correlations in its physical characteristics over that time. Measured longitudinal positions are consistent with a 90-day oscillation in drift, but no corresponding oscillation is found in latitude. We find that the GRS size and shape also oscillate with a 90-day period, having a larger width and aspect ratio when it is at its slowest absolute drift (minimum date-to-date longitude change). The GRS’s UV and methane gas absorption-band brightness variations over this cycle were small, but the core exhibited a small increase in UV brightness in phase with the width oscillation; it is brightest when the GRS is largest. The high-velocity red collar also exhibited color changes, but out of phase with the other oscillations. Maximum interior velocities over the cycle were about 20 m s−1 larger than minimum velocities, slightly larger than the mean uncertainty of 13 m s−1, but velocity variability did not follow a simple sinusoidal pattern as did other parameters such as longitude width or drift. Relative vorticity values were compared with aspect ratios and show that the GRS does not currently follow the Kida relation.JWST/NIRISS reveals the water-rich "steam world" atmosphere of GJ 9827 d
(2024)
Flaring Activity for Low-mass Stars in the β Pictoris Moving Group
The Astronomical Journal American Astronomical Society 168:4 (2024) 173