Seasonal Evolution of Titan’s Stratospheric Tilt and Temperature Field at High Resolution from Cassini/CIRS
The Planetary Science Journal IOP Publishing 6:5 (2025) 114
Abstract:
The Cassini spacecraft observed Titan from 2004 to 2017, capturing key atmospheric features, including the tilt of the middle atmosphere and the formation and breakup of winter polar vortices. We analyze low spectral resolution infrared observations from Cassini’s Composite Infrared Spectrometer (CIRS), which provide excellent spatial and temporal coverage and the best horizontal spatial resolution of any of the CIRS observations. With approximately 4 times higher meridional resolution than previous studies, we map the stratospheric temperature for almost half a Titan year. We determine the evolution of Titan’s stratospheric tilt, finding that it is most constant in the inertial frame, directed 120° ± 6° west of the Titan–Sun vector at the northern spring equinox, with seasonal oscillations in the tilt magnitude between around 2 .° 5 and 8°. Using the high meridional resolution temperature field, we reveal finer details in the zonal wind and potential vorticity. In addition to the strong winter zonal jet, a weaker zonal jet in Titan’s summer hemisphere is observed, and there is a suggestion that the main winter hemisphere jet briefly splits into two. We also present the strongest evidence yet that Titan’s polar vortex is annular for part of its life cycle.The Radiative Effects of Photochemical Hazes on the Atmospheric Circulation and Phase Curves of Sub-Neptunes
The Astrophysical Journal American Astronomical Society 985:1 (2025) 98
The bolometric Bond albedo and energy balance of Uranus
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025)
Abstract:
<jats:title>Abstract</jats:title> <jats:p>Using a newly developed ‘holistic’ atmospheric model of the aerosol structure in Uranus’s atmosphere, based upon observations made by HST/STIS, Gemini/NIFS and IRTF/SpeX from 2000 – 2009, we make a new estimate the bolometric Bond albedo of Uranus during this time of A* = 0.338 ± 0.011, with a phase integral of q* = 1.36 ± 0.03. Then, using a simple seasonal model, developed to be consistent with the disc-integrated blue and green magnitude data from the Lowell Observatory from 1950 – 2016, we model how Uranus’s reflectivity and heat budget vary during its orbit and determine new orbital-mean average values for the bolometric Bond albedo of $\overline{A^*} = 0.349 \pm 0.016$ and for the absorbed solar flux of $\overline{P_\mathrm{in}}=0.604 \pm 0.027$ W m−2. Assuming the outgoing thermal flux to be $\overline{P_\mathrm{out}}=0.693 \pm 0.013$ W m−2, as previously determined from Voyager 2 observations, we arrive at a new estimate of Uranus’s average heat flux budget of Pout/Pin = 1.15 ± 0.06, finding considerable variation with time due to Uranus’s significant orbital eccentricity of 0.046. This leads the flux budget to vary from Pout/Pin = 1.03 near perihelion, to 1.24 near aphelion. We conclude that although Pout/Pin is considerably smaller than for the other giant planets, Uranus is not in thermal equilibrium with the Sun.</jats:p>Escaping Helium and a Highly Muted Spectrum Suggest a Metal-enriched Atmosphere on Sub-Neptune GJ 3090 b from JWST Transit Spectroscopy
The Astrophysical Journal Letters American Astronomical Society 985:1 (2025) L10
Abstract:
Sub-Neptunes, the most common planet type, remain poorly understood. Their atmospheres are expected to be diverse, but their compositions are challenging to determine, even with JWST. Here, we present the first JWST spectroscopic study of the warm sub-Neptune GJ 3090 b (2.13 R⊕, Teq,A = 0.3 ∼ 700 K), which orbits an M2V star, making it a favorable target for atmosphere characterization. We observed four transits of GJ 3090 b: two each using JWST NIRISS/SOSS and NIRSpec/G395H, yielding wavelength coverage from 0.6 to 5.2 μm. We detect the signature of the 10833 Å metastable helium triplet at a statistical significance of 5.5σ with an amplitude of 434 ± 79 ppm, marking the first such detection in a sub-Neptune with JWST. This amplitude is significantly smaller than predicted by solar-metallicity forward models, suggesting a metal-enriched atmosphere that decreases the mass-loss rate and attenuates the helium feature amplitude. Moreover, we find that stellar contamination, in the form of the transit light source effect, dominates the NIRISS transmission spectra, with unocculted spot and faculae properties varying across the two visits separated in time by approximately 6 months. Free retrieval analyses on the NIRSpec/G395H spectrum find tentative evidence for highly muted features and a lack of CH4. These findings are best explained by a high-metallicity atmosphere (>100× solar at 3σ confidence for clouds at ∼μbar pressures) using chemically consistent retrievals and self-consistent model grids. Further observations of GJ 3090 b are needed for tighter constraints on the atmospheric abundances and to gain a deeper understanding of the processes that led to its potential metal enrichment.The atmosphere of Titan in late northern summer from JWST and Keck observations
Nature Astronomy Springer Nature (2025)