Dynamical development of strength and stability of asteroid material under 440 GeV proton beam irradiation

(2024)

Authors:

Melanie Bochmann, Karl-Georg Schlesinger, Charles Arrowsmith, Paraskevi Alexaki, Marta Alfonso Poza, Mohamed Ambarki, Emily Andersen, Pablo Bilbao, Robert Bingham, Filipe Cruz, Aboubakr Ebn Rahmoun, Alice Goillot, Jonathan Halliday, Brian Huffman, Eva Kamenicka, Michael Lazzaroni, Eva Los, Jean-Marc Quetsch, Brian Reville, Panagiota Rousiadou, Subir Sarkar, Luis Silva, Pascal Simon, Enrica Soria, Vasiliki Stergiou, Sifei Zhang, Nikolaos Charitonidis, Gianluca Gregori

The study of shock-compressed condensed matter by use of advanced light sources

AIP Conference Proceedings AIP Publishing 3066:1 (2024) 440001

Numerical simulations of laser-driven experiments of ion acceleration in stochastic magnetic fields

Physics of Plasmas American Institute of Physics 31:12 (2024) 122105

Authors:

Kassie Moczulski, Thomas Campbell, Charles Arrowsmith, Archie Bott, Subir Sarkar, Alexander Schekochihin, Gianluca Gregori

Abstract:

We present numerical simulations used to interpret laser-driven plasma experiments at the GSI Helmholtz Centre for Heavy Ion Research. The mechanisms by which non-thermal particles are accelerated, in astrophysical environments e.g., the solar wind, supernova remnants, and gamma ray bursts, is a topic of intense study. When shocks are present the primary acceleration mechanism is believed to be first-order Fermi, which accelerates particles as they cross a shock. Second-order Fermi acceleration can also contribute, utilizing magnetic mirrors for particle energization. Despite this mechanism being less efficient, the ubiquity of magnetized turbulence in the universe necessitates its consideration. Another acceleration mechanism is the lower-hybrid drift instability, arising from gradients of both density and magnetic field, which produce lower-hybrid waves with an electric field which energizes particles as they cross these waves. With the combination of high-powered laser systems and particle accelerators it is possible to study the mechanisms behind cosmic-ray acceleration in the laboratory. In this work, we combine experimental results and high-fidelity threedimensional simulations to estimate the efficiency of ion acceleration in a weakly magnetized interaction region. We validate the FLASH MHD code with experimental results and use OSIRIS particle-in-cell (PIC) code to verify the initial formation of the interaction region, showing good agreement between codes and experimental results. We find that the plasma conditions in the experiment are conducive to the lower-hybrid drift instability, yielding an increase in energy ∆E of ∼ 264 keV for 242 MeV calcium ions.

Saturation of the compression of two interacting magnetized plasma toroids evidenced in the laboratory

Nature Communications Nature Research 15:1 (2024) 10065

Authors:

A Sladkov, C Fegan, W Yao, AFA Bott, SN Chen, H Ahmed, ED Filippov, R Lelièvre, P Martin, A McIlvenny, T Waltenspiel, P Antici, M Borghesi, S Pikuz, A Ciardi, E d’Humières, A Soloviev, M Starodubtsev, J Fuchs

Abstract:

Interactions between magnetic fields advected by matter play a fundamental role in the Universe at a diverse range of scales. A crucial role these interactions play is in making turbulent fields highly anisotropic, leading to observed ordered fields. These in turn, are important evolutionary factors for all the systems within and around. Despite scant evidence, due to the difficulty in measuring even near-Earth events, the magnetic field compression factor in these interactions, measured at very varied scales, is limited to a few. However, compressing matter in which a magnetic field is embedded, results in compression up to several thousands. Here we show, using laboratory experiments and matching three-dimensional hybrid simulations, that there is indeed a very effective saturation of the compression when two independent parallel-oriented magnetic fields regions encounter one another due to plasma advection. We found that the observed saturation is linked to a build-up of the magnetic pressure, which decelerates and redirects the inflows at their encounter point, thereby stopping further compression. Moreover, the growth of an electric field, induced by the incoming flows and the magnetic field, acts in redirecting the inflows transversely, further hampering field compression.

Modeling of warm dense hydrogen via explicit real-time electron dynamics: dynamic structure factors

Physical Review E American Physical Society 110 (2024) 055205

Authors:

P Svensson, SM Vinko, G Gregori

Abstract:

We present two methods for computing the dynamic structure factor for warm dense hydrogen without invoking either the Born-Oppenheimer approximation or the Chihara decomposition, by employing a wave-packet description that resolves the electron dynamics during ion evolution. First, a semiclassical method is discussed, which is corrected based on known quantum constraints, and second, a direct computation of the density response function within the molecular dynamics. The wave-packet models are compared to PIMC and DFT-MD for the static and low-frequency behavior. For the high-frequency behavior the models recover the expected behavior in the limits of small and large momentum transfers and show the characteristic flattening of the plasmon dispersion for intermediate momentum transfers due to interactions, in agreement with commonly used models for x-ray Thomson scattering. By modeling the electrons and ions on an equal footing, both the ion and free electron part of the spectrum can now be treated within a single framework where we simultaneously resolve the ion-acoustic and plasmon mode, with a self-consistent description of collisions and screening.