Dielectronic satellite emission from a solid-density Mg plasma: relationship to models of ionisation potential depression

Physical Review E American Physical Society 109:4 (2024) 045204

Authors:

Gabriel Pérez-Callejo, Thomas Gawne, TR Preston, Patrick Hollebon, Sam Vinko, Steven Rose, Justin Wark

Abstract:

We report on experiments where solid-density Mg plasmas are created by heating with the focused output of the Linac Coherent Light Source x-ray free-electron laser. We study the K-shell emission from the helium- and lithium-like ions using Bragg crystal spectroscopy. Observation of the dielectronic satellites in lithium-like ions confirms that the M-shell electrons appear bound for these high charge states. An analysis of the intensity of these satellites indicates that when modeled with an atomic-kinetics code, the ionization potential depression model employed needs to produce depressions for these ions which lie between those predicted by the well known Stewart-Pyatt and Ecker-Kroll models. These results are largely consistent with recent density functional theory calculations.

Cosmic-ray confinement in radio bubbles by micromirrors

(2024)

Authors:

Robert J Ewart, Patrick Reichherzer, Archie FA Bott, Matthew W Kunz, Alexander A Schekochihin

Resonant excitation of plasma waves in a plasma channel

Physical Review Research American Physical Society 6:2 (2024) L022001

Authors:

Aimee Ross, James Chappell, John Van De Wetering, James Cowley, Emily Archer, Nicolas Bourgeois, L Corner, Dr Emerson, Linus Feder, Xj Gu, Oscar Jakobsson, H Jones, Alexander Picksley, L Reid, Wei-Ting Wang, Roman Walczak, Simon Hooker

Abstract:

We demonstrate resonant excitation of a plasma wave by a train of short laser pulses guided in a preformed plasma channel, for parameters relevant to a plasma-modulated plasma accelerator (P-MoPA). We show experimentally that a train of N≈10 short pulses, of total energy ∼1J, can be guided through 110mm long plasma channels with on-axis densities in the range 1017-1018cm-3. The spectrum of the transmitted train is found to be strongly red shifted when the plasma period is tuned to the intratrain pulse spacing. Numerical simulations are found to be in excellent agreement with the measurements and indicate that the resonantly excited plasma waves have an amplitude in the range 3-10GVm-1, corresponding to an accelerator stage energy gain of order 1GeV.

Generation of photoionized plasmas in the laboratory of relevance to accretion-powered x-ray sources using keV line radiation

High Energy Density Physics Elsevier 51 (2024) 101097

Authors:

David Riley, Raj Laxmi Singh, Steven White, Matthew Charlwood, David Bailie, Cormac Hyland, T Audet, G Sarri, B Kettle, G Gribakin, Steven J Rose, Eg Hill, Gj Ferland, Rjr Williams, Fp Keenan

Abstract:

We describe laboratory experiments to generate x-ray photoionized plasmas of relevance to accretion-powered x-ray sources such as neutron star binaries and quasars, with significant improvements over previous work. A key quantity is referenced, namely the photoionization parameter, defined as ξ = 4πF/newhere F is the x-ray flux and ne the electron density. This is normally meaningful in an astrophysical steady-state context, but is also commonly used in the literature as a figure of merit for laboratory experiments that are, of necessity, time-dependent. We demonstrate emission-weighted values of ξ > 50 erg-cm s−1 using laser-plasma x-ray sources, with higher results at the centre of the plasma which are in the regime of interest for several astrophysical scenarios. Comparisons of laboratory experiments with astrophysical codes are always limited, principally by the many orders of magnitude differences in time and spatial scales, but also other plasma parameters. However useful checks on performance can often be made for a limited range of parameters. For example, we show that our use of a keV line source, rather than the quasi-blackbody radiation fields normally employed in such experiments, has allowed the generation of the ratio of inner-shell to outer-shell photoionization expected from a blackbody source with ∼keV spectral temperature. We compare calculations from our in-house plasma modelling code with those from Cloudy and find moderately good agreement for the time evolution of both electron temperature and average ionisation. However, a comparison of code predictions for a K-β argon X-ray spectrum with experimental data reveals that our Cloudy simulation overestimates the intensities of more highly ionised argon species. This is not totally surprising as the Cloudy model was generated for a single set of plasma conditions, while the experimental data are spatially integrated.

Electron-beam-based Compton scattering x-ray source for probing high-energy-density physics

Physical Review Accelerators and Beams American Physical Society 27:3 (2024) 034701

Authors:

Hans G Rinderknecht, G Bruhaug, G, Vlad Costin Musat, Gianluca Gregori, Hannah Poole, David Bishel, David A Chin, JR Rygg, GW Collins

Abstract:

The physics basis for an electron-beam-based Compton scattering (ECOS) x-ray source is investigated for single-shot experiments at major high energy density facilities such as the Omega Laser Facility, National Ignition Facility, and Z pulsed power facility. A source of monoenergetic (δϵ/ϵ<5%) 10- to 50-keV x rays can be produced by scattering of a short-pulse optical laser by a 23- to 53-MeV electron beam and collimating the scattered photons. The number and spectrum of scattered photons is calculated as a function of electron packet charge, electron and laser pulse duration, laser intensity, and collision geometry. A source with greater than 1010 photons in a 1-mm radius spot at the OMEGA target chamber center and 100-ps time resolution is plausible with the available electron gun and laser technology. Design requirements for diffraction, inelastic scattering and imaging experiments as well as opportunities for improved performance are discussed.