Electron-beam-based Compton scattering x-ray source for probing high-energy-density physics

Physical Review Accelerators and Beams American Physical Society 27:3 (2024) 034701

Authors:

Hans G Rinderknecht, G Bruhaug, G, Vlad Costin Musat, Gianluca Gregori, Hannah Poole, David Bishel, David A Chin, JR Rygg, GW Collins

Abstract:

The physics basis for an electron-beam-based Compton scattering (ECOS) x-ray source is investigated for single-shot experiments at major high energy density facilities such as the Omega Laser Facility, National Ignition Facility, and Z pulsed power facility. A source of monoenergetic (δϵ/ϵ<5%) 10- to 50-keV x rays can be produced by scattering of a short-pulse optical laser by a 23- to 53-MeV electron beam and collimating the scattered photons. The number and spectrum of scattered photons is calculated as a function of electron packet charge, electron and laser pulse duration, laser intensity, and collision geometry. A source with greater than 1010 photons in a 1-mm radius spot at the OMEGA target chamber center and 100-ps time resolution is plausible with the available electron gun and laser technology. Design requirements for diffraction, inelastic scattering and imaging experiments as well as opportunities for improved performance are discussed.

Phase transitions of Fe$_2$O$_3$ under laser shock compression

(2024)

Authors:

A Amouretti, C Crépisson, S Azadi, D Cabaret, T Campbell, DA Chin, B Colin, GR Collins, L Crandall, G Fiquet, A Forte, T Gawne, F Guyot, P Heighway, H Lee, D McGonegle, B Nagler, J Pintor, D Polsin, G Rousse, Y Shi, E Smith, JS Wark, SM Vinko, M Harmand

Quantifying ionization in hot dense plasmas

Physical Review E American Physical Society 109 (2024) L023201

Authors:

Thomas Gawne, Sam Vinko, Justin Wark

Abstract:

Ionization is a problematic quantity in that it does not have a well-defined thermodynamic definition, yet it is a key parameter within plasma modelling. One still therefore aims to find a consistent and unambiguous definition for the ionization state. Within this context we present finite-temperature density functional theory calculations of the ionization state of carbon in CH plasmas using two potential definitions: one based on counting the number of continuum electrons, and another based on the optical conductivity. Differences of up to 10% are observed between the two methods. However, including “Pauli forbidden” transitions in the conductivity reproduces the counting definition, suggesting such transitions are important to evaluate the ionization state.

Multi-GeV wakefield acceleration in a plasma-modulated plasma accelerator

Physical Review E American Physical Society 109:2 (2024) 25206

Authors:

Johannes J van de Wetering, Simon M Hooker, Roman Walczak

Abstract:

We investigate the accelerator stage of a plasma-modulated plasma accelerator (P-MoPA) [Jakobsson et al., Phys. Rev. Lett. 127, 184801 (2021)] using both the paraxial wave equation and particle-in-cell (PIC) simulations. We show that adjusting the laser and plasma parameters of the modulator stage of a P-MoPA allows the temporal profile of pulses within the pulse train to be controlled, which in turn allows the wake amplitude in the accelerator stage to be as much as 72% larger than that generated by a plasma beat-wave accelerator with the same total drive laser energy. Our analysis shows that Rosenbluth-Liu detuning is unimportant in a P-MoPA if the number of pulses in the train is less than ∼30, and that this detuning is also partially counteracted by increased red-shifting, and hence increased pulse spacing, towards the back of the train. An analysis of transverse mode oscillations of the driving pulse train is found to be in good agreement with 2D (Cartesian) PIC simulations. PIC simulations demonstrating energy gains of ∼1.5GeV (∼2.5GeV) for drive pulse energies of 2.4J (5.0J) are presented. Our results suggest that P-MoPAs driven by few-joule, picosecond pulses, such as those provided by high-repetition-rate thin-disk lasers, could accelerate electron bunches to multi-GeV energies at pulse repetition rates in the kilohertz range.

Achievement of target gain larger than unity in an inertial fusion experiment

Physical Review Letters American Physical Society 132:6 (2024) 065102

Authors:

H Abu-Shawareb, R Acree, P Adams, J Adams, B Addis, R Aden, P Adrian, Bb Afeyan, M Aggleton, L Aghaian, A Aguirre, D Aikens, J Akre, F Albert, M Albrecht, Bj Albright, J Albritton, J Alcala, C Alday, Da Alessi, N Alexander, J Alfonso, N Alfonso, E Alger, Sj Ali, Za Ali, A Allen, We Alley, P Amala, Pa Amendt, P Amick, S Ammula, C Amorin, Dj Ampleford, Rw Anderson, T Anklam, N Antipa, B Appelbe, C Aracne-Ruddle, E Araya, Tn Archuleta, M Arend, P Arnold, T Arnold, A Arsenlis, J Asay, Lj Atherton, D Atkinson, R Atkinson, Jm Auerbach

Abstract:

On December 5, 2022, an indirect drive fusion implosion on the National Ignition Facility (NIF) achieved a target gain G_{target} of 1.5. This is the first laboratory demonstration of exceeding "scientific breakeven" (or G_{target}>1) where 2.05 MJ of 351 nm laser light produced 3.1 MJ of total fusion yield, a result which significantly exceeds the Lawson criterion for fusion ignition as reported in a previous NIF implosion [H. Abu-Shawareb et al. (Indirect Drive ICF Collaboration), Phys. Rev. Lett. 129, 075001 (2022)PRLTAO0031-900710.1103/PhysRevLett.129.075001]. This achievement is the culmination of more than five decades of research and gives proof that laboratory fusion, based on fundamental physics principles, is possible. This Letter reports on the target, laser, design, and experimental advancements that led to this result.