Cosmic-ray confinement in radio bubbles by micromirrors

Monthly Notices of the Royal Astronomical Society Oxford University Press 532:2 (2024) 2098-2107

Authors:

Robert Ewart, Patrick Reichherzer, Archie Bott, Matthew W Kunz, Alexander Schekochihin

Abstract:

Radio bubbles, ubiquitous features of the intracluster medium around active galactic nuclei, are known to rise buoyantly for multiple scale heights through the intracluster medium (ICM). It is an open question how the bubbles can retain their high-energy cosmic-ray content over such distances. We propose that the enhanced scattering of cosmic rays due to micromirrors generated in the ICM is a viable mechanism for confining the cosmic rays within bubbles and can qualitatively reproduce their morphology. We discuss the observational implications of such a model of cosmic-ray confinement.

Collisional whistler instability and electron temperature staircase in inhomogeneous plasma

(2024)

Authors:

NA Lopez, AFA Bott, AA Schekochihin

Laboratory realization of relativistic pair-plasma beams

Nature Communications Springer Nature 15:1 (2024) 5029

Authors:

CD Arrowsmith, P Simon, PJ Bilbao, Archie FA Bott, S Burger, H Chen, FD Cruz, T Davenne, I Efthymiopoulos, DH Froula, A Goillot, JT Gudmundsson, D Haberberger, Jonathan WD Halliday, Thomas Hodge, Brian T Huffman, Sam Iaquinta, Francesco Miniati, B Reville, Subir Sarkar, Alexander Schekochihin, LO Silva, R Simpson, Vasiliki Stergiou, RMGM Trines, N Charitonidis, R Bingham, Gianluca Gregori

Abstract:

Relativistic electron-positron plasmas are ubiquitous in extreme astrophysical environments such as black-hole and neutron-star magnetospheres, where accretion-powered jets and pulsar winds are expected to be enriched with electron-positron pairs. Their role in the dynamics of such environments is in many cases believed to be fundamental, but their behavior differs significantly from typical electron-ion plasmas due to the matter-antimatter symmetry of the charged components. So far, our experimental inability to produce large yields of positrons in quasi-neutral beams has restricted the understanding of electron-positron pair plasmas to simple numerical and analytical studies, which are rather limited. We present the first experimental results confirming the generation of high-density, quasi-neutral, relativistic electron-positron pair beams using the 440 GeV/c beam at CERN’s Super Proton Synchrotron (SPS) accelerator. Monte Carlo simulations agree well with the experimental data and show that the characteristic scales necessary for collective plasma behavior, such as the Debye length and the collisionless skin depth, are exceeded by the measured size of the produced pair beams. Our work opens up the possibility of directly probing the microphysics of pair plasmas beyond quasi-linear evolution into regimes that are challenging to simulate or measure via astronomical observations.

Characterization of foam-filled hohlraums for inertial fusion experiments

(2024)

Authors:

Sam Iaquinta, Peter Amendt, Jose Milovich, Eduard Dewald, Laurent Divol, Ogden Jones, Larry Suter, Russel Wallace, Robert Bingham, Siegfried Glenzer, Gianluca Gregori

Attosecond and nano-Coulomb electron bunches via the Zero Vector Potential mechanism

Scientific Reports Springer Nature 14:1 (2024) 10805

Authors:

Robin Timmis, Robert Paddock, Iustin Ouatu, Jordan Lee, Sunny Howard, Eduard Atonga, Rusko Ruskov, Hannah Martin, Robin Wang, Ramy Aboushelbaya, Marko von der Leyen, Edward Gumbrell, Peter Norreys

Abstract:

The commissioning of multi-petawatt class laser facilities around the world is gathering pace. One of the primary motivations for these investments is the acceleration of high-quality, low-emittance electron bunches. Here we explore the interaction of a high-intensity femtosecond laser pulse with a mass-limited dense target to produce MeV attosecond electron bunches in transmission and confirm with three-dimensional simulation that such bunches have low emittance and nano-Coulomb charge. We then perform a large parameter scan from non-relativistic laser intensities to the laser-QED regime and from the critical plasma density to beyond solid density to demonstrate that the electron bunch energies and the laser pulse energy absorption into the plasma can be quantitatively described via the Zero Vector Potential mechanism. These results have wide-ranging implications for future particle accelerator science and associated technologies.