Simulating sub-wavelength temporal effects in a seeded FEL driven by laser-accelerated electrons
FEL 2009 - 31st International Free Electron Laser Conference (2009) 119-122
Abstract:
Ultrashort electron bunches from laser-driven plasma accelerators hold promise as drivers for short-wavelength free electron lasers. While FEL simulation techniques have been successful in simulating lasing at present-day facilities, the novel sources investigated here are likely to violate a number of widely-held assumptions. For instance the HHG seed radiation, as well as the radiation generated by the bunch, may not conform to the slowly-varying envelope approximation (SVEA) on which the majority of codes rely. Additionally, the longitudinal macroparticle binning precludes the modeling of the full physics of the system. In order to more completely simulate the sub-wavelength effects which arise, we have developed an unaveraged 1-D time-dependent code without the SVEA. We use this to perform numerical analyses and highlight some of the additional features that these new systems present. We conclude that while coherent spontaneous emission from ultra-short bunches may significantly affect start-up, the sub-wavelength structure of HHG seeds has little effect.Modelling photoionised plasma experiments
High Energy Density Physics Elsevier 5:4 (2009) 302-306
Advanced-ignition-concept exploration on OMEGA
Plasma Physics and Controlled Fusion 51:12 (2009)
Abstract:
Advanced ignition concepts, such as fast ignition and shock ignition, are being investigated at the Omega Laser Facility. Integrated fast-ignition experiments with room-temperature re-entrant cone targets have begun, using 18 kJ of 351 nm drive energy to implode empty 40 νm thick CD shells, followed by 1.0 kJ of 1053 nm wavelength, short-pulse energy. Short pulses of 10 ps width have irradiated the inside of a hollow gold re-entrant cone at the time of peak compression. A threefold increase in the time-integrated, 2 to 7 keV x-ray emission was observed with x-ray pinhole cameras, indicating that energy is coupled from the short-pulse laser into the core by fast electrons. In shock-ignition experiments, spherical plastic-shell targets were compressed to high areal densities on a low adiabat, and a strong shock wave was sent into the converging, compressed capsule. In one experiment, 60 beams were used with an intensity spike at the end of the laser pulse, and the implosion performance was studied through neutron-yield and areal-density measurements. In a second experiment, the 60 OMEGA beams were split into a 40+20 configuration, with 40 low-intensity beams used for fuel assembly and 20 delayed beams with a short, high-intensity pulse shape (up to 1 × 1016 W cm-2) for shock generation. © 2009 IOP Publishing Ltd.Perspective for high energy density studies on X-ray FELs
Proceedings of SPIE - The International Society for Optical Engineering 7451 (2009)
Abstract:
We report on the x-ray absorption of Warm Dense Matter experiment at the FLASH Free Electron Laser (FEL) facility at DESY. The FEL beam is used to produce Warm Dense Matter with soft x-ray absorption as the probe of electronic structure. A multilayer-coated parabolic mirror focuses the FEL radiation, to spot sizes as small as 0.3μm in a ∼15fs pulse of containing >10 12 photons at 13.5 nm wavelength, onto a thin sample. Silicon photodiodes measure the transmitted and reflected beams, while spectroscopy provides detailed measurement of the temperature of the sample. The goal is to measure over a range of intensities approaching 10 18 W/cm 2. Experimental results will be presented along with theoretical calculations. A brief report on future FEL efforts will be given. © 2009 SPIE.Proton acceleration experiments and warm dense matter research using high power lasers
Plasma Physics and Controlled Fusion 51:12 (2009)