Model Independent Electron-Ion Equilibration Rate, Debye Temperature, and Bond Strength Measurements in Warm Dense Metals with Inelastic X-Ray Scattering
Radiative Instabilities in the Stagnation Layer of Colliding, X-Ray Driven Plasma Flows
Monte Carlo modeling of the linear Breit-Wheeler process within the geant4 framework
Abstract:
A linear Breit-Wheeler module for the code geant4 has been developed. This allows signal-to-noise ratio calculations of linear Breit-Wheeler detection experiments to be performed within a single framework. The interaction between two photon sources is modeled by treating one as a static field, then photons from the second source are sampled and tracked through the field. To increase the efficiency of the module, we have used a Gaussian process regression, which can lead to an increase in the calculation rate by a factor of up to 1000. To demonstrate the capabilities of this module, we use it to perform a parameter scan, modeling an experiment based on that recently reported by Kettle et al. [New J. Phys. 23, 115006 (2021)]. We show that colliding 50-fs duration γ rays, produced through bremsstrahlung emission of a 100 pC, 2-GeV laser wakefield accelerator beam, with a 50-ps x-ray field, generated by a germanium burn-through foil heated to temperatures > 150 eV, this experiment is capable of producing > 1 Breit-Wheeler pair per shot.
Detection of high-frequency gravitational waves using high-energy pulsed lasers
Abstract:
We propose a new method for detecting high frequency gravitational waves (GWs) using high energy pulsed lasers. Through the inverse Gertsenshtein effect, the interaction between a GW and the laser beam results in the creation of an electromagnetic signal. The latter can be detected using single-photon counting techniques. We compute the minimal strain of a detectable GW which only depends on the laser parameters. We find that a resonance occurs in this process when the frequency of the GW is twice the frequency of the laser. With this method, the frequency range $10^{13}-10^{19} $ Hz is explored non-continuously for strains $h \gtrsim 10^{-20}$ for current laser systems and can be extended to $h \gtrsim 10^{-26}$ with future generation facilities.Non-thermal evolution of dense plasmas driven by intense x-ray fields
Abstract:
The advent of x-ray free-electron lasers has enabled a range of new experimental investigations into the properties of matter driven to extreme conditions via intense x-ray-matter interactions. The femtosecond timescales of these interactions lead to the creation of transient high-energy-density plasmas, where both the electrons and the ions may be far from local thermodynamic equilibrium. Predictive modelling of such systems remains challenging because of the different timescales at which electrons and ions thermalize, and because of the vast number of atomic configurations required to describe highly-ionized plasmas. Here we present CCFLY, a code designed to model the time-dependent evolution of both electron distributions and ion states interacting with intense x-ray fields on ultra-short timescales, far from local thermodynamic equilibrium. We explore how the plasma relaxes to local thermodynamic equilibrium on femtosecond timescales in terms of the charge state distribution, electron density, and temperature.