Stability of the Modulator in a Plasma-Modulated Plasma Accelerator

(2023)

Authors:

Johannes J van de Wetering, Simon M Hooker, Roman Walczak

Hyperspectral compressive wavefront sensing

High Power Laser Science and Engineering Cambridge University Press 11 (2023) e32

Authors:

Sunny Howard, Jannik Esslinger, Robin HW Wang, Peter Norreys, Andreas Döpp

Abstract:

Presented is a novel way to combine snapshot compressive imaging and lateral shearing interferometry in order to capture the spatio-spectral phase of an ultrashort laser pulse in a single shot. A deep unrolling algorithm is utilized for snapshot compressive imaging reconstruction due to its parameter efficiency and superior speed relative to other methods, potentially allowing for online reconstruction. The algorithm’s regularization term is represented using a neural network with 3D convolutional layers to exploit the spatio-spectral correlations that exist in laser wavefronts. Compressed sensing is not typically applied to modulated signals, but we demonstrate its success here. Furthermore, we train a neural network to predict the wavefronts from a lateral shearing interferogram in terms of Zernike polynomials, which again increases the speed of our technique without sacrificing fidelity. This method is supported with simulation-based results. While applied to the example of lateral shearing interferometry, the methods presented here are generally applicable to a wide range of signals, including Shack–Hartmann-type sensors. The results may be of interest beyond the context of laser wavefront characterization, including within quantitative phase imaging.

Modulational instability in large-amplitude linear laser wakefields

(2023)

Authors:

Alexander von Boetticher, Roman Walczak, Simon Hooker

Observation of monoenergetic electrons from two-pulse ionization injection in quasilinear laser-wakefields

Physical Review Letters American Physical Society 130 (2023) 105002

Authors:

Marko von der Leyen, James Holloway, Y Ma, Pt Campbell, Ramy Aboushelbaya, Q Qian, Af Antoine, M Balcazar, J Cardarelli, Qingsong Feng, R Fitzgarrald, Bx Hou, G Kalinchenko, J Latham, Am Maksimchuk, A McKelvey, J Nees, Iustin Ouatu, Robert Paddock, Benjamin Spiers, Agr Thomas, Robin Timmis, Karl Krushelnick, Peter Norreys

Abstract:

The generation of low emittance electron beams from laser-driven wakefields is crucial for the development of compact X-ray sources. Here, we show new results for the injection and acceleration of quasi-monoenergetic electron beams in low amplitude wakefields experimentally and using simulations. This is achieved by using two laser pulses decoupling the wakefield generation from the electron trapping via ionization injection. The injection duration, which affects the beam charge and energy spread, is found to be tunable by adjusting the relative pulse delay. By changing the polarization of the injector pulse, reducing the ionization volume, the electron spectra of the accelerated electron bunches are improved.

Hyperspectral Compressive Wavefront Sensing

(2023)

Authors:

Sunny Howard, Jannik Esslinger, Robin HW Wang, Peter Norreys, Andreas Doepp