Measurement of the decay of laser-driven linear plasma wakefields

(2023)

Authors:

J Jonnerby, A von Boetticher, J Holloway, L Corner, A Picksley, AJ Ross, RJ Shalloo, C Thornton, N Bourgeois, R Walczak, SM Hooker

Radiation burnthrough measurements to infer opacity at conditions close to the solar radiative zone–convective zone boundary

Physics of Plasmas AIP Publishing 30:6 (2023) 063302

Authors:

Dj Hoarty, J Morton, Jc Rougier, M Rubery, Yp Opachich, D Swatton, S Richardson, Rf Heeter, K McLean, Sj Rose, Ts Perry, B Remington

Abstract:

Recent measurements at the Sandia National Laboratory of the x-ray transmission of iron plasma have inferred opacities much higher than predicted by theory, which casts doubt on modeling of iron x-ray radiative opacity at conditions close to the solar convective zone-radiative zone boundary. An increased radiative opacity of the solar mixture, in particular iron, is a possible explanation for the disagreement in the position of the solar convection zone-radiative zone boundary as measured by helioseismology and predicted by modeling using the most recent photosphere analysis of the elemental composition. Here, we present data from radiation burnthrough experiments, which do not support a large increase in the opacity of iron at conditions close to the base of the solar convection zone and provide a constraint on the possible values of both the mean opacity and the opacity in the x-ray range of the Sandia experiments. The data agree with opacity values from current state-of-the-art opacity modeling using the CASSANDRA opacity code.

Ion emission from plasmas produced by femtosecond pulses of short-wavelength free-electron laser radiation focused on massive targets: an overview and comparison with long-wavelength laser ablation

Proceedings of SPIE Society of Photo-optical Instrumentation Engineers 12578 (2023)

Authors:

Josef Krása, Vincenzo Nassisi, Tomas Burian, Vera Hájková, Jaromir Chalupský, Simon Jelinek, Katerina Frantálová, Michal Krupka, Zuzana Kuglerová, Sushil K Singh, Vojtech Vozda, Ludek Vyšín, Jan Wild, Michal Šmíd, Pablo Perez-Martin, Xiayun Pan, Marion Kühlman, Juan Pintor, Jakub Cikhardt, Matthias Dreimann, Dennis Eckermann, Felix Rosenthal, Sam M Vinko, Alessandro Forte, Thomas Gawne, Thomas Campbell, Shenyuan Ren, YuanFeng Shi, Trevor Hutchinson, Oliver Humphries, Thomas Preston, Mikako Makita, Motoaki Nakatsutsumi, Alexander Köhler, Marion Harmand, Sven Toleikis, Katerina Falk, Libor Juha

Abstract:

We report on ion emission from plasma produced on thick targets irradiated with nanosecond and femtosecond pulses delivered by mid-ultraviolet and soft x-ray lasers, respectively. To distinguish between different ion acceleration mechanisms, the maximum kinetic energy of ions produced under different interaction conditions is plotted versus laser fluence. The transformation of the time-of-flight detector signal into ion charge density distance-of-flight spectra makes it possible to determine the mean kinetic energy of the fastest ion groups based on the influence of the acoustic velocity of ion expansion. This allows obtaining additional characteristics of the ion production. The final energy of the group of fast ions determined using the ion sound velocity model is an order of magnitude larger in the fs-XFEL interaction than in the ns-UV one. On the contrary, the ablation yield of ions in our experiment is seven orders of magnitude greater when applying ns-UV laser pulses, not only due to higher energies of UV laser pulses, but also due to a significant difference in interaction and ion formation mechanisms.

SpK: a fast atomic and microphysics code for the high-energy-density regime

High Energy Density Physics Elsevier 48 (2023) 101053

Authors:

Aj Crilly, Npl Niasse, Ar Fraser, Da Chapman, Kw McLean, Steven Rose, Jp Chittenden

Abstract:

SpK is part of the numerical codebase at Imperial College London used to model high energy density physics (HEDP) experiments. SpK is an efficient atomic and microphysics code used to perform detailed configuration accounting calculations of electronic and ionic stage populations, opacities and emissivities for use in post-processing and radiation hydrodynamics simulations. This is done using screened hydrogenic atomic data supplemented by the NIST energy level database. An extended Saha model solves for chemical equilibrium with extensions for non-ideal physics, such as ionisation potential depression, and non thermal equilibrium corrections. A tree-heap (treap) data structure is used to store spectral data, such as opacity, which is dynamic thus allowing easy insertion of points around spectral lines without a-priori knowledge of the ion stage populations. Results from SpK are compared to other codes and descriptions of radiation transport solutions which use SpK data are given. The treap data structure and SpK’s computational efficiency allows inline post-processing of 3D hydrodynamics simulations with a dynamically evolving spectrum stored in a treap.

Linear colliders based on laser-plasma accelerators

Journal of Instrumentation IOP Publishing 18:6 (2023) T06001

Authors:

Cb Schroeder, F Albert, C Benedetti, J Bromage, D Bruhwiler, Ss Bulanov, Em Campbell, Nm Cook, B Cros, Mc Downer, E Esarey, Dh Froula, M Fuchs, Cgr Geddes, Sj Gessner, Aj Gonsalves, Mj Hogan, Sm Hooker, A Huebl, C Jing, C Joshi, K Krushelnick, Wp Leemans, R Lehe, Ar Maier, Hm Milchberg, Wb Mori, K Nakamura, J Osterhoff, Jp Palastro, M Palmer, K Poder, Jg Power, Ba Shadwick, D Terzani, M Thevenet, Agr Thomas, J van Tilborg, M Turner, N Vafaei-Najafabadi, J-L Vay, T Zhou, J Zuegel

Abstract:

Laser-plasma accelerators are capable of sustaining accelerating fields of 10-100 GeV/m, 100-1000 times that of conventional technology and the highest fields produced by any of the widely researched advanced accelerator concepts. Laser-plasma accelerators also intrinsically accelerate short particle bunches, several orders of magnitude shorter than that of conventional technology, which leads to reductions in beamstrahlung and, hence, savings in the overall power consumption to reach a desired luminosity. These properties make laser-plasma accelerators a promising accelerator technology for a more compact, less expensive high-energy linear collider providing multi-TeV polarized leptons. In this submission to the Snowmass 2021 Accelerator Frontier, we discuss the motivation for a laser-plasma-accelerator-based linear collider, the status of the field, and potential linear collider concepts up to 15 TeV. We outline the research and development path toward a collider based on laser-plasma accelerator technology, and highlight near-term and mid-term applications of this technology on the collider development path. The required experimental facilities to carry out this research are described. We conclude with community recommendations developed during Snowmass.