Measuring the principal Hugoniot of inertial-confinement-fusion-relevant TMPTA plastic foams

Physical Review E American Physical Society 107:2 (2023) 25206

Authors:

Robert W Paddock, Marko W von der Leyen, Ramy Aboushelbaya, Peter A Norreys, David J Chapman, Daniel E Eakins, M Oliver, RJ Clarke, M Notley, CD Baird, N Booth, C Spindloe, D Haddock, S Irving, RHH Scott, J Pasley, M Cipriani, F Consoli, B Albertazzi, M Koenig, AS Martynenko, L Wegert, P Neumayer, P Tchórz, P Rączka, P Mabey, W Garbett, RMN Goshadze, VV Karasiev, SX Hu

Abstract:

Wetted-foam layers are of significant interest for inertial-confinement-fusion capsules, due to the control they provide over the convergence ratio of the implosion and the opportunity this affords to minimize hydrodynamic instability growth. However, the equation of state for fusion-relevant foams are not well characterized, and many simulations rely on modeling such foams as a homogeneous medium with the foam average density. To address this issue, an experiment was performed using the VULCAN Nd:glass laser at the Central Laser Facility. The aim was to measure the principal Hugoniot of TMPTA plastic foams at 260 mg/cm3, corresponding to the density of liquid DT-wetted-foam layers, and their “hydrodynamic equivalent” capsules. A VISAR was used to obtain the shock velocity of both the foam and an α-quartz reference layer, while streaked optical pyrometry provided the temperature of the shocked material. The measurements confirm that, for the 20–120 GPa pressure range accessed, this material can indeed be well described using the equation of state of the homogeneous medium at the foam density.

Modulational instability in large-amplitude linear laser wakefields

Physical Review E American Physical Society 107 (2023) L023201

Authors:

Alexander von Boetticher, Roman Walczak, Simon Hooker

Abstract:

We investigate the growth of ion density perturbations in large-amplitude linear laser wakefields via two-dimensional particle-in-cell simulations. Growth rates and wave numbers are found to be consistent with a longitudinal strong-field modulational instability (SFMI). We examine the transverse dependence of the instability for a Gaussian wakefield envelope and show that growth rates and wavenumbers can be maximised off-axis. On-axis growth rates are found to decrease with increasing ion mass or electron temperature. These results are in close agreement with the dispersion relation of a Langmuir wave with energy density that is large compared to the plasma thermal energy density. The implications for wakefield accelerators, in particular multi-pulse schemes, are discussed.

Parametric co-linear axion photon instability

Physics Letters B Elsevier 839 (2023) 137759

Authors:

Ka Beyer, G Marocco, C Danson, R Bingham, G Gregori

Abstract:

Axions and axion-like particles generically couple to QED via the axion-photon-photon interaction. This leads to a modification of Maxwell's equations known in the literature as axion-electrodynamics. The new form of Maxwell's equations gives rise to a new parametric instability in which a strong pump decays into a scattered light wave and an axion. This axion mode grows exponentially in time and leads to a change in the polarisation of the initial laser beam, therefore providing a signal for detection. Currently operating laser systems can put bounds on the axion parameter space, however longer pulselengths are necessary to reach the current best laboratory bounds of light-shining through wall experiments.

Investigating Mechanisms of State Localization in Highly-Ionized Dense Plasmas

(2023)

Authors:

Thomas Gawne, Thomas Campbell, Alessandro Forte, Patrick Hollebon, Gabriel Perez-Callejo, Oliver Humphries, Oliver Karnbach, Muhammad F Kasim, Thomas R Preston, Hae Ja Lee, Alan Miscampbell, Quincy Y van den Berg, Bob Nagler, Shenyuan Ren, Ryan B Royle, Justin S Wark, Sam M Vinko

Towards more robust ignition of inertial fusion targets

Physics of Plasmas AIP Publishing 30 (2023) 022702

Authors:

Jordan Lee, Rusko T Ruskov, Heath S Martin, Stephen Hughes, Marko W von der Leyen, Robert W Paddock, Robin Timmis, Iustin Ouatu, Qingsong S Feng, Sunny Howard, Eduard Atonga, Ramy Aboushelbaya, TD Arber, R Bingham, Peter Norreys

Abstract:

Following the 1.3 MJ fusion milestone at the National Ignition Facility, the further development of inertial confinement fusion, both as a source for future electricity generation and for high energy density physics applications, requires the development of more robust ignition concepts at current laser facility energy scales. This can potentially be achieved by auxiliary heating the hotspot of low convergence wetted foam implosions where hydrodynamic and parametric instabilities are minimised. This paper presents the first multi-dimensional Vlasov-Maxwell and particle-in-cell simulations to model this collisionless interaction, only recently made possible by access to the largest modern supercomputers. The key parameter of interest is the maximum fraction of energy that can be extracted from the electron beams into the hotspot plasma. The simulations indicate that significant coupling efficiencies are achieved over a wide range of beam parameters and spatial configurations. The implications for experimental tests on the National Ignition Facility are discussed.