Measurements of the K-shell opacity of a solid-density magnesium plasma heated by an X-ray free electron laser
Physical Review Letters American Physical Society 119 (2017) 085001
Abstract:
We present measurements of the spectrally-resolved X-rays emitted from solid-density magnesium targets of varying sub-μm thicknesses isochorically heated by an X-ray laser. The data exhibit a largely thickness-independent source function, allowing the extraction of a measure of the opacity to K-shell X-rays within well-defined regimes of electron density and temperature, extremely close to local thermodynamic equilibrium (LTE) conditions. The deduced opacities at the peak of the K-α transitions of the ions are consistent with those predicted by detailed atomic-kinetics calculations.Observation of reverse saturable absorption of an X-ray laser
Physical Review Letters American Physical Society 119 (2017) 075002
Abstract:
A nonlinear absorber in which the excited state absorption is larger than the ground state can undergo a process called reverse saturable absorption (RSA). It is a well-known phenomenon in laser physics in the optical regime, but is more difficult to generate in the x-ray regime, where fast non-radiative core electron transitions typically dominate the population kinetics during light matter interactions. Here, we report the first observation of decreasing x-ray transmission in a solid target pumped by intense x-ray free electron laser pulses. The measurement has been made below the K-absorption edge of aluminum, and the x-ray intensity ranges are 10^16~17 W/cm2. It has been confirmed by collisional radiative population kinetic calculations, underscoring the fast spectral modulation of the x-ray pulses and charge states relevant to the absorption and transmission of x-ray photons. The processes shown through detailed simulations are consistent with reverse saturable absorption, which would be the first observation of this phenomena in the x-ray regime. These light matter interactions provide a unique opportunity to investigate optical transport properties in extreme state of matters, as well as affording the potential to regulate ultrafast XFEL pulses.Excitation and control of plasma wakefields by multiple laser pulses
Physical Review Letters American Physical Society 119:4 (2017) 044802
Abstract:
We demonstrate experimentally the resonant excitation of plasma waves by trains of laser pulses. We also take an important first step to achieving an energy recovery plasma accelerator by showing that a plasma wave can be damped by an out-of-resonance trailing laser pulse. The measured laser wakefields are found to be in excellent agreement with analytical and numerical models of wakefield excitation in the linear regime. Our results indicate a promising direction for achieving highly controlled, GeV-scale laser-plasma accelerators operating at multikilohertz repetition rates.Horizon 2020 EuPRAXIA design study
8TH INTERNATIONAL PARTICLE ACCELERATOR CONFERENCE (IPAC 2017) 874 (2017)
X-Ray diffraction measurements of plasticity in shock-compressed vanadium in the region of 10-70 GPa
Journal of Applied Physics American Institute of Physics 122 (2017) 025117